An Invitation to Mathematical Biology
by
 
Costa, David G. author.

Title
An Invitation to Mathematical Biology

Author
Costa, David G. author.

ISBN
9783031402586

Edition
1st ed. 2023.

Physical Description
IX, 124 p. 71 illus., 66 illus. in color. online resource.

Contents
Preface -- 1 Introduction -- 2 Exponential Growth and Decay -- 2.1 Exponential Growth -- 2.2 Exponential Decay -- 2.3 Summary -- 2.4 Exercises -- 2.5 References- 3 Discrete Time Models -- 3.1 Solutions of the discrete logistic -- 3.2 Enhancements to the Discrete Logistic Function -- 3.3 Summary -- 3.4 Exercises -- 3.5 References- 4 Fixed Points, Stability, and Cobwebbing -- 4.1 Fixed Points and Cobwebbing -- 4.2 Linear Stability Analysis -- 4.3 Summary -- 4.4 Exercises -- 4.5 References- 5 Population Genetics Models -- 5.1 Two Phenotypes Case -- 5.2 Three Phenotypes Case -- 5.3 Summary -- 5.4 Exercises -- 5.5 References- 6 Chaotic Systems -- 6.1 Robert May's Model -- 6.2 Solving the Model -- 6.3 Model Fixed Points -- 6.4 Summary -- 6.5 Exercises -- 6.6 References- 7 Continuous Time Models -- 7.1 The Continuous Logistic Equation -- 7.2 Equilibrium States and their Stability -- 7.3 Continuous Logistic Equation with Harvesting -- 7.4 Summary -- 7.5 Exercises -- 7.6 References- -- 8 Organism-Organism Interaction Models.-8.1 Interaction Models Introduction -- 8.2 Competition -- 8.3 Predator-Prey -- 8.4 Mutualism -- 8.5 Summary -- 8.6 Exercises -- 8.7 References- 9 Host-Parasitoid Models -- 9.1 Beddington Model -- 9.2 Some Solutions of the Beddington Model -- 9.3 MATLAB Solution for the Host-Parasitoid Model -- 9.4 Python Solution for the Host-Parasitoid Model -- 9.5 Summary -- 9.6 Exercises -- 9.7 References- 10 Competition Models with Logistic Term -- 10.1Addition of Logistic Term to Competition Models -- 10.2 Predator-Prey-Prey Three Species Model -- 10.3Predator-Prey-Prey Model Solutions -- 10.4 Summary -- 10.5Exercises -- 10.6References- 11 Infectious Disease Models -- 11.1 Basic Compartment Modeling Approaches -- 11.2SI Model -- 11.3SI model with Growth in S -- 11.4 Applications using Mathematica -- 11.5 Applications using MATLAB -- 11.6 Summary -- 11.7 Exercises -- 11.8 References- 12 Organism Environment Interactions -- 12.1 Introduction to Energy Budgets -- 12.2 Radiation -- 12.3 Convection -- 12.4 Transpiration -- 12.5 Total Energy Budget -- 12.6 Solving the Budget: Newton's Method for Root Finding -- 12.7 Experimenting with the Leaf Energy Budget -- 12.8 Summary -- 12.9 Exercises -- 12.10 References- 13 Appendix 1: Brief Review of Differential Equations in Calculus- 14 Appendix 2: Numerical Solutions of ODEs- 15 Appendix 3: Tutorial on Mathematica- 16 Appendix 4: Tutorial on MATLAB- 17 Appendix 5: Tutorial on Python Programming- Index.

Subject Term
Biology.
 
Medical sciences.
 
Bioinformatics.
 
Biomathematics.
 
Population genetics.
 
System theory.
 
Biological Sciences.
 
Health Sciences.
 
Computational and Systems Biology.
 
Mathematical and Computational Biology.
 
Complex Systems.

Added Author
Schulte, Paul J.

Added Corporate Author
SpringerLink (Online service)

Electronic Access
https://doi.org/10.1007/978-3-031-40258-6


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book528463-1001ONLINEElektronik Kütüphane