Random evolutionary systems : asymptotic properties and large deviations
by
 
Koroli͡uk, V. S. (Vladimir Semenovich), 1925-

Title
Random evolutionary systems : asymptotic properties and large deviations

Author
Koroli͡uk, V. S. (Vladimir Semenovich), 1925-

ISBN
9781119851257
 
9781119851233

Publication Information
London : ISTE, Ltd. ; Hoboken : Wiley, 2021.

Physical Description
1 online resource (315 pages)

Series
Mathematics and statistics series

Contents
Front Matter -- Basic Tools for Asymptotic Analysis -- Weak Convergence in Poisson and Levy Approximation Schemes -- Large Deviations in the Scheme of Asymptotically Small Diffusion -- Large Deviations of Systems in Poisson and Levy Approximation Schemes -- Large Deviations of Systems in the Scheme of Splitting and Double Merging -- Difference Diffusion Models with Equilibrium -- Random Evolutionary Systems in Discrete-Continuous Time -- Diffusion Approximation of Random Evolutions in Random Media.

Abstract
Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results.

Local Note
John Wiley and Sons

Subject Term
Mathematical statistics.
 
Mathematical statistics -- Asymptotic theory.
 
Science -- Mathematical models.
 
Statistique mathématique -- Théorie asymptotique.
 
Sciences -- Modèles mathématiques.
 
Mathematical statistics
 
Mathematical statistics -- Asymptotic theory
 
Science -- Mathematical models

Added Author
Samoilenko, Igor.

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119851257


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book596942-1001QA276Wiley E-Kitap Koleksiyonu