Cyberphysical smart cities infrastructures : optimal operation and intelligent decision making
by
 
Amini, M. Hadi, editor.

Title
Cyberphysical smart cities infrastructures : optimal operation and intelligent decision making

Author
Amini, M. Hadi, editor.

ISBN
9781119748328
 
9781119748311
 
9781119748342

Physical Description
1 online resource : illustrations (some color)

Contents
Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision-Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision-Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI-Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi-agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions.
 
Chapter 6 Risk-Aware Cyber-Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk-Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk-Aware Routing Algorithm -- 6.4 Risk-Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk-Aware Routing and Latency-Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C-Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C-Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking.
 
8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision-Driven Traffic Management -- 8.2.6 Challenges of Computer Vision-Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F-score -- 9.5 Findings and Discussion.
 
9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R-GOOSE and R-SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV).

Abstract
"This book introduces novel algorithms and solutions to real-world problems under the umbrella of cyberphysical systems. It is organized in two sections: the first covers optimization algorithms for large-scale decision-making and the second covers intelligent decision-making in cyberphysical smart cities. The book takes into account new directions in engineering and science by deploying novel efficient algorithms to enhance near-real-time operation of underlying networks and use of peer-to-peer communication. These include the more in-depth study of special issues on deployment of these algorithms to improve the operation of smart cities. The material is presented in a concise and understandable form, taking into account the requirements for technical texts"-- Provided by publisher.

Local Note
John Wiley and Sons

Subject Term
Smart cities.
 
Smart structures.
 
Smart power grids.
 
Villes intelligentes.
 
Structures intelligentes.
 
Réseaux électriques intelligents.
 
Smart cities
 
Smart power grids
 
Smart structures

Added Author
Amini, M. Hadi,
 
Shafie-khah, Miadreza,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119748342


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book596994-1001TD159.4 .C93 2022Wiley E-Kitap Koleksiyonu