Data science handbook : a practical approach
by
 
Prakash, Kolla Bhanu, author.

Title
Data science handbook : a practical approach

Author
Prakash, Kolla Bhanu, author.

ISBN
9781119858003
 
9781119858010
 
9781119857990

Physical Description
1 online resource : illustrations (chiefly color).

Series
Next-generation computing and communication engineering

Contents
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Acknowledgment -- Preface -- 1 Data Munging Basics -- 1 Introduction -- 1.1 Filtering and Selecting Data -- 1.2 Treating Missing Values -- 1.3 Removing Duplicatesduplicates -- 1.4 Concatenating and Transforming Data -- 1.5 Grouping and Data Aggregation -- References -- 2 Data Visualization -- 2.1 Creating Standard Plots (Line, Bar, Pie) -- 2.2 Defining Elements of a Plot -- 2.3 Plot Formatting Segment 3 Plot formatting -- 2.4 Creating Labels and Annotations -- 2.5 Creating Visualizations from Time Series Data -- 2.6 Constructing Histograms, Box Plots, and Scatter Plots -- References -- 3 Basic Math and Statistics -- 3.1 Linear Algebra -- 3.2 Calculus -- 3.2.1 Differential Calculus -- 3.2.2 Integral Calculus -- Statistics for Data Science -- 3.3 Inferential Statistics -- 3.3.1 Central Limit Theorem -- 3.3.2 Hypothesis Testing -- 3.3.3 ANOVA -- 3.3.4 Qualitative Data Analysis -- 3.4 Using NumPy to Perform Arithmetic Operations on Data -- 3.5 Generating Summary Statistics Using Pandas and Scipy -- 3.6 Summarizing Categorical Data Using Pandas -- 3.7 Starting with Parametric Methods in Pandas and Scipy -- 3.8 Delving Into Non-Parametric Methods Using Pandas and Scipy -- 3.9 Transforming Dataset Distributions -- References -- 4 Introduction to Machine Learning -- 4.1 Introduction to Machine Learning -- 4.2 Types of Machine Learning Algorithms -- 4.3 Explanatory Factor Analysis -- 4.4 Principal Component Analysis (PCA) -- References -- 5 Outlier Analysis -- 5.1 Extreme Value Analysis Using Univariate Methods -- 5.2 Multivariate Analysis for Outlier Detection -- 5.3 DBSCan Clustering to Identify Outliers -- References -- 6 Cluster Analysis -- 6.1 K-Means Algorithm -- 6.2 Hierarchial Methods -- 6.3 Instance-Based Learning w/k-Nearest Neighbor.

Abstract
This desk reference handbook gives a hands-on experience on various algorithms and popular techniques used in real-time in data science to all researchers working in various domains.

Local Note
John Wiley and Sons

Subject Term
Big data.
 
Data mining.
 
Quantitative research.
 
Information visualization.
 
Données volumineuses.
 
Exploration de données (Informatique)
 
Recherche quantitative.
 
Visualisation de l'information.
 
Intelligence (AI) & Semantics.
 
COMPUTERS.
 
Big data
 
Data mining
 
Information visualization
 
Quantitative research
 
Dades massives.
 
Mineria de dades.
 
Investigació quantitativa.
 
Visualització de la informació.

Genre
Electronic books.
 
Llibres electrònics.

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119858010


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book597722-1001QA76.9 .B45 P73 2022Wiley E-Kitap Koleksiyonu