Sodium-ion batteries : materials, characterization, and technology
by
 
Titirici, Maria-Magdalena, editor.

Title
Sodium-ion batteries : materials, characterization, and technology

Author
Titirici, Maria-Magdalena, editor.

ISBN
9783527825752
 
9783527825769
 
9783527825776

Physical Description
1 online resource

Contents
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Anodes -- Chapter 1 Graphite as an Anode Material in Sodium-Ion Batteries -- 1.1 Introduction -- 1.2 Graphite and Graphite Intercalation Compounds (GICs) -- 1.3 Graphite as Negative Electrode in LIBs and SIBs -- 1.3.1 Graphite in Lithium-Ion Batteries, Li-rich b-GICs -- 1.3.2 Problems in Using Graphite in Sodium-Ion Batteries (The Lack of Na-rich b-GICs) -- 1.3.3 Solution to Use Graphite in Sodium-Ion Batteries (Utilizing Na-rich t-GICs) -- 1.4 Recent Development in Using Graphite for SIBs -- 1.4.1 Lattice and Electrode Expansion During Cycling -- 1.4.2 Influence of the Electrolyte -- 1.4.3 Influence of Temperature -- 1.4.4 Physicochemical Properties -- 1.4.5 Solid Electrolyte Interphase (SEI) -- 1.4.6 Increasing the Capacity -- 1.5 Outlook -- References -- Chapter 2 Hard Carbon Anodes for Na-Ion Batteries -- 2.1 Introduction -- 2.2 Structure Characteristics of Hard Carbons -- 2.3 Characterization of Hard Carbon Materials for Na-Ion Batteries -- 2.3.1 Determining the Carbon Interlayer Spacing and the Degree of Disorder -- 2.3.2 Characterizations of Defects -- 2.3.3 Porosity Characterization -- 2.3.4 Surface Composition and Electrode-Electrolyte Interface Characterization -- 2.3.5 Other In/Ex Situ Characterization Techniques to Elucidate Structure-Performance Correlations -- 2.4 Sodium Storage Mechanisms in Hard Carbons -- 2.5 Types of Hard Carbon Anodes for Na-Ion Batteries -- 2.5.1 Biomass-Derived Hard Carbons -- 2.5.2 Heteroatom-Doped Hard Carbons -- 2.5.2.1 Nitrogen Doping -- 2.5.2.2 Boron, Sulfur, and Phosphorus Doping -- 2.5.2.3 Oxygen Doping -- 2.5.2.4 Multiatom Doping -- 2.5.3 Other Hard Carbons -- 2.5.4 The Combination of Hard and Soft Carbons -- 2.6 Conclusions and Outlook -- References -- Chapter 3 Alloy Anodes for Sodium-Ion Batteries -- 3.1 Introduction.
 
3.2 Challenges Faced by Alloy-Typed Anodes -- 3.2.1 Volume Expansion -- 3.2.2 Unstable Solid Electrolyte Interphase Layer -- 3.2.3 Voltage Hysteresis -- 3.2.4 Elucidation of the Electrochemical Reaction Mechanisms -- 3.3 Strategies Toward High-Performance Alloy Anodes -- 3.3.1 Nanostructuring -- 3.3.2 Morphological and Electrode Architectural Control -- 3.3.3 Structural Engineering -- 3.3.4 Surface Engineering -- 3.3.5 Hybrid Composite Design -- 3.4 Modification of Alloy Anodes -- 3.4.1 Phosphorus -- 3.4.1.1 Red Phosphorus -- 3.4.1.2 Black Phosphorus -- 3.4.2 Silicon -- 3.4.3 Tin -- 3.4.4 Germanium -- 3.4.5 Antimony -- 3.4.6 Bismuth -- 3.4.7 Intermetallic Compounds -- 3.5 Summary and Outlook -- References -- Part II Cathodes -- Chapter 4 Sodium Layered Oxide Cathode Materials -- 4.1 Introduction -- 4.1.1 Structure Types -- 4.1.2 High-Voltage Nickel-Based Sodium Layered Oxides -- 4.1.2.1 Introduction -- 4.1.2.2 Unary Ni Layered Oxides -- 4.1.2.3 Binary Ni/Fe-Based Layered Oxides -- 4.1.2.4 Binary Ni/Mn-Based Layered Oxides -- 4.1.2.5 Conclusions and Outlook -- 4.1.3 Low-Cost Mn and Fe-Based Sodium Layered Oxides -- 4.1.3.1 Introduction -- 4.1.3.2 Unary Mn and Fe Layered Oxides -- 4.1.3.3 Binary Mn/Fe-Based Layered Oxides -- 4.1.3.4 Doped Binary Mn/Fe Layered Oxides -- 4.1.3.5 Conclusions and Outlook -- 4.1.4 Layered Oxides with Anionic Redox Reactions -- 4.1.4.1 Introduction -- 4.1.4.2 Structural Approaches to Enhance Oxygen Redox and Its Reversibility -- 4.1.4.3 Conclusions -- 4.1.5 Conclusions and Future Outlook -- References -- Chapter 5 Phosphate-Based Polyanionic Sodium-Ion Electrode Materials -- 5.1 Introduction -- 5.2 Phosphate-Based Electrode Materials -- 5.2.1 Sodium Transition Metal Phosphates (PO43−) -- 5.2.2 Sodium Transition Metal Metaphosphates (PO43−)3 -- 5.2.3 Sodium Transition Metal Pyrophosphate (P2O74−).
 
5.2.4 Sodium Transition Metal Oxyphosphate (OPO4) -- 5.2.5 Sodium Transition Metal Fluorophosphates -- 5.2.5.1 NaMPO4F (M & -- equals -- V) -- 5.2.5.2 Na2MPO4F (M & -- equals -- Fe, Mn, Co, Ni,) -- 5.2.6 Sodium-Fluorinated Vanadium Oxyphosphates Na3V2(PO4)2F3−xOx (0 ≤ x2) -- 5.2.7 Sodium Transition Metal Nitridophosphates Na2MII2(PO3)3N and Na3MIII(PO3)3N -- 5.3 Mixed Polyanion-Based Electrode Materials -- 5.3.1 Mixed Transition Metal Phosphates-Pyrophosphates [(PO4)(P2O7)] -- 5.3.1.1 Na4M3(PO4)2P2O7 -- 5.3.1.2 Na7M4(P2O7)4PO4 -- 5.3.2 Mixed Transition Metal Carbonates-Phosphates [(CO3)(PO4)] -- 5.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 6 Prussian Blue Electrodes for Sodium-Ion Batteries -- 6.1 Introduction -- 6.2 Structural and Bonding -- 6.3 Factors Affecting Electrochemical Behavior -- 6.3.1 Structural Transitions -- 6.3.2 Vacancies and Water -- 6.4 Synthetic Strategies -- 6.4.1 Solution Precipitation Method -- 6.4.2 Hydrothermal Method/Solvothermal -- 6.4.3 Electrodeposition -- 6.5 Aqueous SIBs -- 6.5.1 Single Redox PBAs -- 6.5.2 Multielectron Redox PBAs -- 6.5.3 All PBA Full Aqueous SIBs (ASIBs) -- 6.6 Non-aqueous SIBs -- 6.6.1 NaxM[Fe(CN)6] - Single Redox Site -- 6.6.2 NaxM[Fe(CN)6] - Multiredox Sites -- 6.6.3 NaxM[A(CN)6] - Changing C-Coordinated Metal -- 6.7 Commercial Feasibility -- 6.8 Challenges and Future Directions -- References -- Part III Advanced Characterization of Na-Ion Battery Electrodes -- Chapter 7 Understanding Na-Ion Batteries on the Atomic Scale Through Operando X-ray and Neutron Scattering -- 7.1 The Importance and Advantages of Operando Studies -- 7.2 Operando Powder X-ray Diffraction -- 7.2.1 Choice of X-ray Source and Detector -- 7.2.2 Design of Operando PXRD Cells -- 7.2.3 Constructing the Na-Ion Battery Stack for Operando PXRD Studies -- 7.2.3.1 Electrode of Interest.
 
9.4.4 Alloying NIB Anodes -- 9.5 Summary -- Acknowledgements -- References -- Chapter 10 Pair Distribution Function Analysis of Sodium-Ion Batteries -- 10.1 Introduction to Total-Scattering and the Pair Distribution Function -- 10.1.1 Conventional Crystallographic Analysis and Total-Scattering -- 10.1.2 The Pair Distribution Function -- 10.1.3 Experimental Methods to Obtain the Pair Distribution Function -- 10.1.4 Data Collection Methods for Battery Materials -- 10.1.4.1 Sample Containers for X-ray PDF Analysis -- 10.1.4.2 Experimental Strategies -- 10.2 Analyzing the Pair Distribution Function -- 10.2.1 Model-Independent Analyses -- 10.2.1.1 Parametric Studies and Differential PDFs (dPDFs) -- 10.2.2 Modeling the PDF -- 10.2.2.1 Small-Box Modeling -- 10.2.2.2 Big-Box Modeling -- 10.3 Pair Distribution Function Analysis of Sodium-Ion Battery Materials -- 10.3.1 Hard Carbon Anodes -- 10.3.2 Tin Anodes -- 10.3.3 Antimony Anodes -- 10.3.4 Local Cation Order in Na(Ni2/3Sb1/3)O2 -- 10.3.5 Birnessite Materials -- 10.3.6 Electrolytes -- 10.4 Future Horizons for Pair Distribution Function Analysis of Sodium-Ion Batteries -- References -- Part IV Electrolytes -- Chapter 11 Ester- and Ether-Based Electrolytes for Na-Ion Batteries -- 11.1 Introduction -- 11.2 Ester-Based Electrolytes for NIBs -- 11.3 Ether-Based Electrolytes for NIBs -- 11.4 Summary and Perspectives -- References -- Chapter 12 Ionic Liquid and Polymer-Based Electrolytes for Sodium Battery Applications -- 12.1 Introduction -- 12.2 Na-Ion-Based Ionic Liquid Electrolytes -- 12.2.1 The Chemistry and Physicochemical Properties of IL Electrolytes -- 12.2.2 IL Electrolytes Application in Na Secondary Batteries -- 12.2.3 Interfacial Studies of Sodium-Ion Secondary Batteries Using IL Electrolytes -- 12.3 Solid Gel Polymer Electrolytes -- 12.4 Molecular Simulation of Na Battery Electrolytes.

Abstract
Presents uparalleled coverage of Na-ion battery technology, including the most recent research and emerging applications Na-ion battery technologies have emerged as cost-effective, environmentally friendly alternatives to Li-ion batteries, particularly for large-scale storage applications where battery size is less of a concern than in portable electronics or electric vehicles. Scientists and engineers involved in developing commercially viable Na-ion batteries need to understand the state-of-the-art in constituent materials, electrodes, and electrolytes to meet both performance metrics and economic requirements. Sodium-Ion Batteries: Materials, Characterization, and Technology provides in-depth coverage of the material constituents, characterization, applications, upscaling, and commercialization of Na-ion batteries. Contributions by international experts discuss the development and performance of cathode and anode materials and their characterization - using methods such as NMR spectroscopy, magnetic resonance imaging (MRI), and computational studies - as well as ceramics, ionic liquids, and other solid and liquid electrolytes. * Discusses the development of battery technology based on the abundant alkali ion sodium * Features a thorough introduction to Na-ion batteries and their comparison with Li-ion batteries * Reviews recent research on the structure-electrochemical performance relationship and the development of new solid electrolytes * Includes a timely overview of commercial perspectives, cost analysis, and safety issues of Na-ion batteries * Covers emerging technologies including Na-ion capacitors, aqueous sodium batteries, and Na-S batteries The handbook Sodium-Ion Batteries: Materials, Characterization, and Technology is an indispensable reference for researchers and development engineers, materials scientists, electrochemists, and engineering scientists in both academia and industry.

Local Note
John Wiley and Sons

Subject Term
Sodium ion batteries.
 
Sodium ion batteries

Added Author
Titirici, Maria-Magdalena,
 
Adelhelm, Philipp,
 
Hu, Yong Sheng,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527825769


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book598052-1001TK2945 .S62 S63 2023Wiley E-Kitap Koleksiyonu