Additive manufacturing technology : design, optimization and modeling
by
 
Zhou, Kun, editor.

Title
Additive manufacturing technology : design, optimization and modeling

Author
Zhou, Kun, editor.

ISBN
9783527833917
 
9783527833924
 
9783527833931

Physical Description
1 online resource (xii, 389 pages) : illustrations (some color)

Contents
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to 4D Printing: Concepts and Material Systems -- 1.1 Background -- 1.2 Overview of 3D Printing Techniques -- 1.2.1 Single-Material 3D Printing Techniques -- 1.2.2 Multi-Material 3D Printing -- 1.3 Shape-Programmable Materials for 4D Printing -- 1.3.1 Shape-Memory Polymers and Composites -- 1.3.1.1 Single SMP -- 1.3.1.2 SMP Nanocomposites -- 1.3.1.3 Printed Active Fiber-Reinforced Composites -- 1.3.1.4 Bilayer SMPs -- 1.3.1.5 Multi-material SMPs -- 1.3.2 Hydrogels and Composites for 4D Printing -- 1.3.2.1 Single-Material Hydrogels and Composites -- 1.3.2.2 Multi-Material Hydrogels -- 1.3.3 Liquid Crystal Elastomers -- 1.3.3.1 Single-Material LCEs -- 1.3.3.2 LCE-Based Multi-Materials -- 1.3.4 Magnetoactive Soft Materials -- 1.3.4.1 Single Magnetoactive Soft Material Composite -- 1.3.4.2 Multi-material MSMs -- 1.4 Modeling-Guided Design for 4D Printing -- 1.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 2 Strategies in 3D Bioprinting of Cell-Laden Bioinks -- 2.1 Introduction -- 2.2 Drop-on-Demand (DOD)-Based Inkjet Printing -- 2.2.1 Introduction to Inkjet Printing -- 2.2.2 Droplet Formation During DOD Inkjetting of Cell-laden Bioink -- 2.2.2.1 Bioink Preparation and Experimental Setup -- 2.2.2.2 Representative Droplet Formation Observations -- 2.2.3 Cell Distribution Within Microspheres During Inkjet-Based Bioprinting -- 2.2.3.1 Effect of Cell Concentration on Cell Distribution -- 2.2.3.2 Effect of Polymer Concentration on Cell Distribution -- 2.2.3.3 Effect of Excitation Voltage on Cell Distribution -- 2.3 Laser Printing -- 2.3.1 Introduction to Laser Printing -- 2.3.2 Effects of Living Cells on the Bioink Printability -- 2.3.2.1 Representative Observations During Laser Printing of Cell-laden Bioink.
 
2.3.2.2 Effects of Living Cells on Printing Dynamics and Jetting Behaviors -- 2.3.3 Freeform Drop-on-Demand Laser Printing of 3D Alginate and Cellular Constructs -- 2.3.3.1 Overhang Construct Fabrication -- 2.3.3.2 Bifurcated Alginate/Cellular Constructs -- 2.4 Support Bath-Enabled Printing-then-Solidification Extrusion -- 2.4.1 Introduction to Support Bath-Enabled 3D Printing -- 2.4.2 Printing-then-Solidification Extrusion of Alginate and Cellular Structures -- 2.4.2.1 Carbopol-Enabled Two-Step Gelation Approach -- 2.4.2.2 3D Bioprinting of Y-Shaped Tubular Structures -- 2.4.3 Printing-then-Solidification of Liquid Materials in Nanoclay Suspension -- 2.4.3.1 Laponite Utilized as the Support Bath Material for Extrusion Printing -- 2.4.3.2 Gelatin-Based Cellular Construct Fabrication -- 2.5 Continuous Precuring Digital Light Processing (DLP) Printing -- 2.5.1 Introduction to DLP Printing -- 2.5.2 Theoretical Prediction of DLP Working Curve for Photocurable Materials -- 2.5.2.1 Analytical Model of Jacobs Working Curve -- 2.5.2.2 Influence of UV Absorber Concentration -- 2.5.3 Pre-curing Digital Light Processing (DLP) Printing -- 2.5.3.1 The Tunable Pre-curing DLP Printing Approach -- 2.5.3.2 Improving DLP Printing Efficiency by Pre-curing DLP Printing -- 2.5.3.3 Validation of Pre-curing DLP Printing -- 2.6 Summary -- References -- Chapter 3 Alloy Design for Metal Additive Manufacturing -- 3.1 Additive Manufacturing -- 3.1.1 Metal-Based Additive Manufacturing -- 3.1.2 Alloy Development -- 3.1.3 Available Alloys -- 3.1.3.1 Ti-6Al-4V -- 3.1.3.2 Superalloys -- 3.1.3.3 316L Stainless Steel -- 3.1.3.4 AlSi10Mg -- 3.2 Melting and Cooling Processes and Associated Defects -- 3.2.1 The Process -- 3.2.2 Defects -- 3.2.2.1 Solidification Cracks -- 3.2.2.2 Liquation Cracks -- 3.2.2.3 Solid-State Cracking and Residual Stress -- 3.2.2.4 Lack-of-Fusion Porosity.
 
3.2.2.5 Gas Pores -- 3.2.2.6 Keyhole Porosity -- 3.2.2.7 Compositional Changes -- 3.2.2.8 Balling -- 3.2.2.9 Summary -- 3.2.3 Roles of Material Chemical-Physical Properties -- 3.2.3.1 Absorptivity/Backscattering Coefficient -- 3.2.3.2 Heat Capacity and Enthalpy of Melting -- 3.2.3.3 Thermal Conductivity -- 3.2.3.4 Surface Tension -- 3.2.3.5 Boiling Temperature and Volatility -- 3.2.3.6 Thermal Expansion and Contraction -- 3.3 Alloy Design Methodology -- 3.3.1 Keyhole Formation -- 3.3.2 Evaporation of Alloying Elements -- 3.3.3 Balling Defects -- 3.3.4 Solidification Cracking Models -- 3.3.5 Solid-State Defects -- 3.3.6 Modifications to Solidification Behavior -- 3.3.7 Examples of Alloy Design for Additive Manufacturing -- 3.3.7.1 Titanium Alloy for Medical Applications -- 3.3.7.2 Creep-Resistant Ni-Based Superalloy -- 3.3.7.3 High Strength Co-Based Superalloy for High-Temperature Applications -- 3.4 Summary -- Abbreviations -- References -- Chapter 4 Laser and Arc-Based Methods for Additive Manufacturing of Multiple Material Components -- From Design to Manufacture -- 4.1 Background -- 4.2 MMAM components design -- 4.3 Multi-material L-DED -- 4.3.1 Introduction of L-DED -- 4.3.2 Material Feeding Mechanism in Multi-Material L-DED -- 4.3.2.1 Continuous Coaxial Powder Feeding -- 4.3.2.2 Discrete Coaxial Powder Feeding -- 4.3.2.3 Simultaneous Wire and Powder Feeding -- 4.3.3 Materials and Characteristics in Multi-Material L-DED -- 4.3.3.1 L-DED of Ni-Cu Bimetal -- 4.3.3.2 L-DED of Ni-SS Bimetal -- 4.3.3.3 L-DED of Ti-Al Bimetal -- 4.3.3.4 L-DED of Ti-Ni FGM and Ti-SS FGM with Diffusion Barrier Layers -- 4.3.3.5 L-DED of Fe-Cu Bimetal -- 4.3.3.6 L-DED of Ti-ceramic Material System -- 4.4 Multi-material L-PBF -- 4.4.1 Introduction of L-PBF -- 4.4.2 Material Deposition Mechanism in Multi-Material L-PBF -- 4.4.2.1 Unidirectional Material Composition Variation.
 
4.4.2.2 Spatial material composition variation -- 4.4.2.3 Hybrid Methods for Discrete Powder Deposition -- 4.4.3 Materials and Characteristics in Multi-Material L-PBF -- 4.4.3.1 L-PBF of Multiple Metallic Materials -- 4.4.3.2 L-PBF of Hybrid Metal/Ceramic Materials -- 4.4.3.3 L-PBF of Hybrid Metal/Polymer Materials -- 4.4.3.4 Modeling and Simulation of Multi-Material L-PBF Processes -- 4.5 Multi-Material WAAM -- 4.5.1 Introduction of Multi-Material WAAM -- 4.5.2 Material Feeding Mechanism of Multi-Material WAAM -- 4.5.3 Materials and Characteristics in Multi-Material WAAM -- 4.5.3.1 WAAM of SS-Fe/SS Bimetals -- 4.5.3.2 WAAM of SS-Ni Bimetals -- 4.5.3.3 WAAM of Ti-Al Bimetals -- 4.5.3.4 WAAM of Fe-Al Bimetals -- 4.5.3.5 WAAM of Fe-Ni Bimetals -- 4.5.3.6 WAAM of Cu-involved Multi-Metals -- 4.6 Comparison of Multi-Material AM Technologies -- 4.7 Potential Applications of Multi-Material AM -- 4.8 Challenges of Multi-Material AM Technologies -- 4.8.1 Challenges in Multi-Material L-DED and L-PBF -- 4.8.2 Challenges in Multi-Material WAAM -- 4.9 Summary and Outlook -- 4.9.1 Summary -- 4.9.2 Outlook -- References -- Chapter 5 Modified Inherent Strain Method for Predicting Residual Deformation and Stress in Metal Additive Manufacturing -- 5.1 Background -- 5.2 Modified Inherent Strain (MIS) Method -- 5.2.1 Theory for Modification -- 5.2.2 Remarks on the IS Method -- 5.3 Extraction of ISs for L-PBF Process -- 5.4 Governing Equations for MIS-Based Sequential Analysis -- 5.5 Experimental Validation: Double Cantilever Beam -- 5.6 Simulation-Driven Design for L-PBF Process -- 5.6.1 Support Structure Selection for Crack Prevention -- 5.6.1.1 Description of the Workflow -- 5.6.1.2 Determination of the Critical J-Integral for Solid/Support Interface -- 5.6.1.3 Calculation of J-Integral at Solid/Support Interface for as-Built Part.
 
5.6.2 Support Structure Design Based on Topology Optimization -- 5.6.2.1 Description of the Workflow -- 5.6.2.2 Topology Optimization of the Support Structure -- 5.6.2.3 Residual Stress Estimation -- 5.6.3 Laser Scanning Path Design -- 5.6.3.1 Description of the Method -- 5.7 Summary and Outlook -- Acknowledgment -- References -- Chapter 6 High-Fidelity Modeling of Metal Additive Manufacturing -- 6.1 Background -- 6.2 Powder Spreading -- 6.2.1 Governing Equations -- 6.2.2 Model Validation -- 6.2.3 Spreading and Deposition Mechanisms -- 6.2.3.1 Rake-Type Powder Spreading -- 6.2.3.2 Roller-Type Powder Spreading -- 6.2.4 Guidance for Design and Optimization -- 6.2.5 Summary and Outlook -- 6.3 Powder Melting -- 6.3.1 Governing Equations -- 6.3.2 Heat Source Models -- 6.3.2.1 Heat Source Model of Laser Beam -- 6.3.2.2 Heat Source Model of Electron Beam -- 6.3.3 Evaporation and Recoil Pressure -- 6.3.3.1 Evaporation Model -- 6.3.3.2 Model of Flow in Common and Near-Vacuum Environments -- 6.3.4 Model Verification and Validation -- 6.3.4.1 Realistic Heat Inputs -- 6.3.4.2 Keyhole Shape and Dynamics -- 6.3.4.3 Molten Track Profile -- 6.3.5 Coupling with Powder Spreading Model -- 6.3.5.1 Single-Track Cases -- 6.3.5.2 Balling Phenomenon -- 6.3.5.3 Multi-Track Cases -- 6.3.5.4 Multilayer Cases -- 6.3.6 Porosity Reduction and Optimization -- 6.3.7 Summary and Outlook -- 6.4 Thermal Stress -- 6.4.1 Model Construction -- 6.4.2 Simulation Case -- 6.4.3 Stress Concentrations -- 6.4.4 Model Comparison and Application -- 6.4.4.1 Thermomechanical Model for Cross Comparison -- 6.4.4.2 Thermal Cracking -- 6.4.4.3 Thermal Stress-Induced Dislocation -- 6.4.5 Mitigation and Tailoring of Thermal Stress -- 6.4.6 Summary and Outlook -- 6.5 Modeling of Other Unique Phenomena -- 6.5.1 Powder Sintering in EB-PBF -- 6.5.1.1 Liquid-State Sintering -- 6.5.1.2 Phase-Field Model.

Abstract
Provides comprehensive and in-depth knowledge of the latest advances in various additive manufacturing technologies for polymeric materials, metals, multi-materials, functionally graded materials, and cell-laden bio-inks. It also details the application of numerical modeling in facilitating the design and optimization of materials, processes, and printed parts in additive manufacturing.

Local Note
John Wiley and Sons

Subject Term
Additive manufacturing.
 
Fabrication additive.
 
Additive manufacturing

Added Author
Zhou, Kun,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527833931


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book598077-1001TS183.25 .A335 2023 EBWiley E-Kitap Koleksiyonu