Fluid-Structure Interaction : Numerical Simulation Techniques for Naval Applications
by
 
Sigrist, Jean-François, author.

Title
Fluid-Structure Interaction : Numerical Simulation Techniques for Naval Applications

Author
Sigrist, Jean-François, author.

ISBN
9781394188222
 
9781394188208
 
9781789450781

Physical Description
1 online resource (375 pages)

Contents
Cover -- Title Page -- Copyright Page -- Contents -- Foreword: Numerical Simulation: A Strategic Challenge for Our Industrial Sovereignty -- Preface: Fluid-Structure Interactions in Naval Engineering -- Acknowledgments -- Chapter 1. A Brief History of Naval Hydrodynamics -- 1.1. The emergence of a new science -- 1.2. Perfecting the theory -- 1.2.1. Fluids, viscosity and turbulence -- 1.2.2. Potential theories -- 1.2.3. Waves -- 1.3. Ship theory -- 1.3.1. Stability -- 1.3.2. Resistance to forward motion -- 1.3.3. Roll, pitch and seakeeping -- 1.3.4. Propeller and cavitation -- 1.4. The numerical revolution -- 1.5. References -- Chapter 2. Numerical Methods for Vibro-acoustics of Ships in the "Low frequency" Range -- 2.1. The acoustic signature of maritime platforms -- 2.2. Vibro-acoustic models -- 2.2.1. Vibro-acoustics without dissipative effects -- 2.2.2. Dissipation of energy in a fluid -- 2.2.3. Dissipation of energy in materials -- 2.3. Calculating the frequency response -- 2.3.1. Numerical model, vibro-acoustic equation -- 2.3.2. Direct and modal methods -- 2.4. Improving the predictive character of simulations -- 2.4.1. The medium- and high-frequency domains -- 2.4.2. Uncertainty propagation and parametric dependency -- 2.5. References -- Chapter 3. Hybrid Methods for the Vibro-acoustic Response of Submerged Structures -- 3.1. Noise and vibration of a submerged structure -- 3.1.1. Why vibro-acoustics? -- 3.1.2. From the real-world problem to the physical model -- 3.2. Solving the vibro-acoustic problem -- 3.2.1. Substructuring approach -- 3.2.2. Point admittance method -- 3.2.3. Condensed transfer function method -- 3.2.4. Examples of condensation functions -- 3.2.5. Spectral theory of cylindrical shells -- 3.2.6. FEM calculation for internal structures.
 
3.3. Physical analysis of the vibro-acoustic behavior of a submerged cylindrical shell -- 3.3.1. The influence of heavy fluid -- 3.3.2. Vibration behavior of the cylindrical shell -- 3.3.3. The influence of stiffeners -- 3.3.4. Influence of non-axisymmetric internal structures -- 3.4. Conclusion -- 3.5. References -- Chapter 4. "Advanced" Methods for the Vibro-acoustic Response of Naval Structures -- 4.1. On reducing computing time -- 4.2. Parametric reduced-order models in the harmonic regime -- 4.2.1. Bibliographical elements. -- 4.2.2. Standard construction of the parametric reduced-order model -- 4.2.3. Constructing a goal-oriented parametric reduced-order model -- 4.3. Parametric reduced-order models in the time domain -- 4.3.1. Motivation -- 4.3.2. On the stability of full vibro-acoustic models -- 4.3.3. Construction of stable reduced-order models -- 4.3.4. Offline construction of the reduced-basis -- 4.3.5. Illustration of the temporal approach -- 4.4. Conclusion -- 4.5. References -- Chapter 5. Calculating Hydrodynamic Flows: LBM and POD Methods -- 5.1. Model reduction -- 5.2. Proper orthogonal decomposition -- 5.2.1. Calculation of the reduced basis POD -- 5.2.2. Using POD in fluid-structure interaction -- 5.2.3. Sensitivity to parameters and interpolation of POD bases -- 5.3. Lattice Boltzmann method -- 5.3.1. History -- 5.3.2. MRT/BGK -- 5.3.3. Real parameters/LBM parameters -- 5.4. LBM and FSI -- 5.4.1. Boundary conditions in the LBM -- 5.4.2. Immersed boundary method -- 5.5. Conclusion -- 5.6. References -- Chapter 6. Dynamic Behavior of Tube Bundles with Fluid-Structure Interaction -- 6.1. Introduction -- 6.1.1. Tube bundles in the nuclear industry -- 6.1.2. Tube bundles, industrial problems -- 6.1.3. Modeling FSI in exchangers -- 6.2. Physical models and equations -- 6.2.1. Fluid-structure interaction with Euler equations.
 
6.2.2. Numerical methods for Euler equations with FSI -- 6.2.3. Homogenization in the case of tube bundles -- 6.2.4. Numerical methods for homogenization -- 6.2.5. Euler equations, Rayleigh damping -- 6.2.6. Homogenization, Rayleigh damping -- 6.2.7. Implementing the homogenization method -- 6.3. Validation and illustration of the homogenization method -- 6.3.1. Vibrational eigenmodes -- 6.3.2. Rayleigh damping: direct and homogenization methods -- 6.4. Homogenization methods for Navier-Stokes equations -- 6.5. Applications -- 6.5.1. Dynamic behavior of RNR-Na cores -- 6.5.2. Onboard steam generator -- 6.6. Conclusion -- 6.7. References -- Chapter 7. Calculating Turbulent Pressure Spectra -- 7.1. Vibrations caused by turbulent flow -- 7.2. Characteristics of the wall pressure spectrum -- 7.2.1. Turbulent boundary layer without a pressure gradient -- 7.2.2. Flow with a pressure gradient -- 7.3. Empirical models -- 7.3.1. Corcos model -- 7.3.2. Chase models -- 7.3.3. Smol'yakov model -- 7.3.4. Goody's model -- 7.3.5. Rozenberg model -- 7.3.6. Model comparison -- 7.4. Solving the Poisson equation for wall pressure fluctuations -- 7.4.1. Formulations for the TMS part of the wall pressure -- 7.4.2. Formulations for the TMS and TT parts of the wall pressure -- 7.5. Conclusion -- 7.6. References -- Chapter 8. Calculating Fluid-Structure Interactions Using Co-simulation Techniques -- 8.1. Introduction -- 8.2. The physics of fluid-structure interaction -- 8.2.1. Dimensionless numbers for the fluid flow -- 8.2.2. Dimensionless numbers for the motion of structures -- 8.2.3. Dimensionless numbers linked to fluid-structure coupling -- 8.2.4. Additional dimensionless numbers and the generic effects of a fluid on a structure -- 8.2.5. Summary of dimensionless numbers and fluid-structure coupling intensity.
 
8.3. Mathematical formulation of the fluid-structure interaction -- 8.3.1. Mathematical formulation of the fluid problem -- 8.3.2. Mathematical formulation of the structural problem -- 8.3.3. Mathematical formulation of interface coupling conditions -- 8.4. Numerical methods in the dynamics of fluids and structures -- 8.4.1. Numerical methods in the dynamics of fluids -- 8.4.2. Numerical methods in structural dynamics -- 8.4.3. Arbitrary Lagrange-Euler (ALE) formulation and moving meshes -- 8.5. Numerical solution of the fluid-structure interaction -- 8.5.1. Software strategy -- 8.5.2. Time coupling methods in the case of partitioning approaches -- 8.5.3. Methods of space coupling -- 8.5.4. The added mass effect -- 8.6. Examples of applications to naval hydrodynamics -- 8.6.1. Foils in composite materials -- 8.6.2. Hydrodynamics of hulls -- 8.7. Conclusion: Which method for which physics? -- 8.8. References -- Chapter 9. The Seakeeping of Ships -- 9.1. Why predict ships' seakeeping ability? -- 9.1.1. Guaranteeing structural reliability -- 9.1.2. Guaranteeing a ship's safety at sea -- 9.1.3. Predicting operability domains -- 9.1.4. Improving operability -- 9.1.5. Getting to know the environment and how the ship disrupts it -- 9.1.6. The particular case of multibodies -- 9.1.7. Knowing average or low-frequency forces resulting from swell -- 9.2. Waves -- 9.2.1. Origin, nature and description of waves -- 9.2.2. Monochromatic swell -- 9.2.3. Irregular swell -- 9.2.4. Complete nonlinear wave modeling -- 9.2.5. Considering a ship's forward speed -- 9.3. The hydromechanical linear frequency solution -- 9.3.1. Hypotheses and general formulation -- 9.3.2. Response on regular swell -- 9.3.3. Response on irregular swell -- 9.4. Nonlinear time solution based on force models -- 9.4.1. Principles of the method -- 9.4.2. Results.
 
9.4.3. Tools: uses and limitations -- 9.5. Complete solution of the Navier-Stokes equations -- 9.5.1. Method -- 9.5.2. Applications to the problem of seakeeping -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Modeling the Effects of Underwater Explosions on Submerged Structures -- 10.1. Underwater explosions -- 10.1.1. Characterizing the threat -- 10.1.2. Calculating the flow -- 10.1.3. Semi-analytical models for the response of submerged structures -- 10.2. Semi-analytical models for the motion of a rigid hull -- 10.2.1. Local motion of a rigid hull with or without equipment -- 10.2.2. Overall motion of a rigid hull with or without equipment -- 10.3. Semi-analytical models of the motion of a deformable hull -- 10.3.1. Shock signal on a deformable hull alone -- 10.3.2. Correction of the rigid body motion -- 10.3.3. Device rigidly mounted on the hull -- 10.3.4. Simplified representation of hull stiffeners -- 10.4. Notes on implementing models -- 10.5. Conclusion -- 10.6. References -- Chapter 11. Resistance of Composite Structures Under Extreme Hydrodynamic Loads -- 11.1. The behavior of composite materials -- 11.1.1. Orthotropic linear elastic behavior -- 11.1.2. Non-elastic behavior -- 11.1.3. Strain rate dependency -- 11.2. Underwater explosions -- 11.2.1. Categorizing phenomena -- 11.2.2. Analytical formulations and simple experiments -- 11.2.3. Numerical methods -- 11.3. Slamming: phenomenon and formulation -- 11.4. Conclusion -- 11.5. References -- List of Authors -- Index -- EULA.

Abstract
This book provides a comprehensive overview of the numerical simulation of fluid-structure interaction (FSI) for application in marine engineering. Fluid-Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid-structure interaction for designing and optimizing the ships of the future.

Local Note
John Wiley and Sons

Subject Term
Fluid-structure interaction -- Mathematical models.
 
Fluid-structure interaction -- Simulation methods.
 
Marine engineering.
 
Numerical analysis.
 
Interaction fluide-structure -- Modèles mathématiques.
 
Interaction fluide-structure -- Méthodes de simulation.
 
Mécanique navale.
 
Analyse numérique.
 
Fluids.
 
MATHEMATICS.
 
Dynamics.
 
Mechanics.
 
SCIENCE.
 
Fluid-structure interaction -- Mathematical models
 
Marine engineering
 
Numerical analysis

Added Author
Leblond, Cédric,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394188222


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book598147-1001TA357.5 .F58Wiley E-Kitap Koleksiyonu