Biomedical signal analysis
by
 
Rangayyan, Rangaraj M., author.

Title
Biomedical signal analysis

Author
Rangayyan, Rangaraj M., author.

ISBN
9781119825876
 
9781119825869
 
9781119825883

Edition
Third edition.

Physical Description
1 online resource (xxxix, 673 pages) : illustrations.

Series
IEEE Press series in biomedical engineering ; 32
 
IEEE Press series in biomedical engineering ; 32.

Contents
About the Authors xvi -- Foreword by Prof. Willis J. Tompkins xviii -- Foreword by Prof. Alan V. Oppenheim xix -- Preface xxii -- Acknowledgments xxviii -- Symbols and Abbreviations xxxi -- About the Companion Website xxxix -- 1 Introduction to Biomedical Signals 1 -- 1.1 The Nature of Biomedical Signals 1 -- 1.2 Examples of Biomedical Signals 4 -- 1.2.1 The action potential of a cardiac myocyte 5 -- 1.2.2 The action potential of a neuron 9 -- 1.2.3 The electroneurogram (ENG) 10 -- 1.2.4 The electromyogram (EMG) 12 -- 1.2.5 The electrocardiogram (ECG) 20 -- 1.2.6 The electroencephalogram (EEG) 29 -- 1.2.7 Event-related potentials (ERPs) 35 -- 1.2.8 The electrogastrogram (EGG) 36 -- 1.2.9 The phonocardiogram (PCG) 37 -- 1.2.10 The carotid pulse 40 -- 1.2.11 The photoplethysmogram (PPG) 41 -- 1.2.12 Signals from catheter-tip sensors 43 -- 1.2.13 The speech signal 44 -- 1.2.14 The vibroarthrogram (VAG) 48 -- 1.2.15 The vibromyogram (VMG) 52 -- 1.2.16 Otoacoustic emission (OAE) signals 52 -- 1.2.17 Bioacoustic signals 52 -- 1.3 Objectives of Biomedical Signal Analysis 52 -- 1.4 Challenges in Biomedical Signal Analysis 55 -- 1.5 Why Use Computer-aided Monitoring and Diagnosis? 58 -- 1.6 Remarks 60 -- 1.7 Study Questions and Problems 60 -- 1.8 Laboratory Exercises and Projects 62 -- References 63 -- 2 Analysis of Concurrent, Coupled, and Correlated Processes 71 -- 2.1 Problem Statement 71 -- 2.2 Illustration of the Problem with Case Studies 72 -- 2.2.1 The ECG and the PCG 72 -- 2.2.2 The PCG and the carotid pulse 73 -- 2.2.3 The ECG and the atrial electrogram 73 -- 2.2.4 Cardiorespiratory interaction 75 -- 2.2.5 Heart-rate variability 75 -- 2.2.6 The EMG and VMG 77 -- 2.2.7 The knee-joint and muscle-vibration signals 77 -- 2.3 Application: Segmentation of the PCG 78 -- 2.4 Application: Diagnosis and Monitoring of Sleep Apnea 79 -- 2.4.1 Monitoring of sleep apnea by polysomnography 80 -- 2.4.2 Home monitoring of sleep apnea 80 -- 2.4.3 Multivariate and multiorgan analysis 82 -- 2.5 Remarks 85 -- 2.6 Study Questions and Problems 85 -- 2.7 Laboratory Exercises and Projects 86 -- References 86 -- 3 Filtering for Removal of Artifacts 91 -- 3.1 Problem Statement 91 -- 3.2 Random, Structured, and Physiological Noise 92 -- 3.2.1 Random noise 92 -- 3.2.2 Structured noise 98 -- 3.2.3 Physiological interference 98 -- 3.2.4 Stationary, nonstationary, and cyclostationary processes 99 -- 3.3 Illustration of the Problem with Case Studies 101 -- 3.3.1 Noise in event-related potentials 102 -- 3.3.2 High-frequency noise in the ECG 102 -- 3.3.3 Motion artifact in the ECG 102 -- 3.3.4 Power-line interference in ECG signals 103 -- 3.3.5 Maternal ECG interference in fetal ECG 105 -- 3.3.6 Muscle-contraction interference in VAG signals 105 -- 3.3.7 Potential solutions to the problem 106 -- 3.4 Fundamental Concepts of Filtering 106 -- 3.4.1 Linear shift-invariant filters and convolution 107 -- 3.4.2 Transform-domain analysis of signals and systems 117 -- 3.4.3 The pole-zero plot 123 -- 3.4.4 The Fourier transform 125 -- 3.4.5 The discrete Fourier transform 126 -- 3.4.6 Convolution using the DFT 131 -- 3.4.7 Properties of the Fourier transform 133 -- 3.5 Synchronized Averaging 135 -- 3.6 Time-domain Filters 139 -- 3.6.1 Moving-average filters 139 -- 3.6.2 Derivative-based operators to remove low-frequency artifacts 145 -- 3.6.3 Various specifications of a filter 152 -- 3.7 Frequency-domain Filters 153 -- 3.7.1 Removal of high-frequency noise: Butterworth lowpass filters 154 -- 3.7.2 Removal of low-frequency noise: Butterworth highpass filters 161 -- 3.7.3 Removal of periodic artifacts: Notch and comb filters 162 -- 3.8 Order-statistic Filters 169 -- 3.9 The Wiener Filter 171 -- 3.10 Adaptive Filters for Removal of Interference 180 -- 3.10.1 The adaptive noise canceler 181 -- 3.10.2 The least-mean-squares adaptive filter 184 -- 3.10.3 The RLS adaptive filter 185 -- 3.11 Selecting an Appropriate Filter 190 -- 3.12 Application: Removal of Artifacts in ERP Signals 193 -- 3.13 Application: Removal of Artifacts in the ECG 196 -- 3.14 Application: Maternal-Fetal ECG 197 -- 3.15 Application: Muscle-contraction Interference 199 -- 3.16 Remarks 202 -- 3.17 Study Questions and Problems 202 -- 3.18 Laboratory Exercises and Projects 208 -- References 209 -- 4 Detection of Events 213 -- 4.1 Problem Statement 213 -- 4.2 Illustration of the Problem with Case Studies 214 -- 4.2.1 The P, QRS, and T waves in the ECG 214 -- 4.2.2 The first and second heart sounds 215 -- 4.2.3 The dicrotic notch in the carotid pulse 215 -- 4.2.4 EEG rhythms, waves, and transients 215 -- 4.3 Detection of Events and Waves 218 -- 4.3.1 Derivative-based methods for QRS detection 218 -- 4.3.2 The Pan-Tompkins algorithm for QRS detection 220 -- 4.3.3 Detection of the P wave in the ECG 224 -- 4.3.4 Detection of the T wave in the ECG 226 -- 4.3.5 Detection of the dicrotic notch 228 -- 4.4 Correlation Analysis of EEG Rhythms 228 -- 4.4.1 Detection of EEG rhythms 228 -- 4.4.2 Template matching for EEG spike-and-wave detection 231 -- 4.4.3 Detection of EEG rhythms related to seizure 234 -- 4.5 Cross-spectral Techniques 235 -- 4.5.1 Coherence analysis of EEG channels 235 -- 4.6 The Matched Filter 237 -- 4.6.1 Derivation of the transfer function of the matched filter 237 -- 4.6.2 Detection of EEG spike-and-wave complexes 241 -- 4.7 Homomorphic Filtering 242 -- 4.7.1 Generalized linear filtering 244 -- 4.7.2 Homomorphic deconvolution 244 -- 4.7.3 Extraction of the vocal-tract response 245 -- 4.8 Application: ECG Rhythm Analysis 253 -- 4.9 Application: Identification of Heart Sounds 254 -- 4.10 Application: Detection of the Aortic Component of S 2 256 -- 4.11 Remarks 259 -- 4.12 Study Questions and Problems 259 -- 4.13 Laboratory Exercises and Projects 261 -- References 262 -- 5 Analysis of Waveshape and Waveform Complexity 267 -- 5.1 Problem Statement 267 -- 5.2 Illustration of the Problem with Case Studies 268 -- 5.2.1 The QRS complex in the case of bundle-branch block 268 -- 5.2.2 The effect of myocardial ischemia on QRS waveshape 268 -- 5.2.3 Ectopic beats 268 -- 5.2.4 Complexity of the EMG interference pattern 268 -- 5.2.5 PCG intensity patterns 269 -- 5.3 Analysis of ERPs 269 -- 5.4 Morphological Analysis of ECG Waves 269 -- 5.4.1 Correlation coefficient 270 -- 5.4.2 The minimum-phase correspondent and signal length 270 -- 5.4.3 ECG waveform analysis 274 -- 5.5 Envelope Extraction and Analysis 277 -- 5.5.1 Amplitude demodulation 278 -- 5.5.2 Synchronized averaging of PCG envelopes 280 -- 5.5.3 The envelogram 281 -- 5.6 Analysis of Activity 283 -- 5.6.1 The RMS value 283 -- 5.6.2 Zero-crossing rate 285 -- 5.6.3 Turns count 285 -- 5.6.4 Form factor 286 -- 5.7 Application: Normal and Ectopic ECG Beats 287 -- 5.8 Application: Analysis of Exercise ECG 288 -- 5.9 Application: Analysis of the EMG in Relation to Force 290 -- 5.10 Application: Analysis of Respiration 292 -- 5.11 Application: Correlates of Muscular Contraction 294 -- 5.12 Application: Statistical Analysis of VAG Signals 295 -- 5.12.1 Acquisition of knee-joint VAG signals 297 -- 5.12.2 Estimation of the PDFs of VAG signals 297 -- 5.12.3 Screening of VAG signals using statistical parameters 299 -- 5.13 Application: Fractal Analysis of the EMG in Relation to Force 302 -- 5.13.1 Fractals in nature 302 -- 5.13.2 Fractal dimension 303 -- 5.13.3 Fractal analysis of physiological signals 304 -- 5.13.4 Fractal analysis of EMG signals 305 -- 5.14 Remarks 306 -- 5.15 Study Questions and Problems 307 -- 5.16 Laboratory Exercises and Projects 309 -- References 310 -- 6 Frequency-domain Characterization of Signals and Systems 317 -- 6.1 Problem Statement 318 -- 6.2 Illustration of the Problem with Case Studies 318 -- 6.2.1 The effect of myocardial elasticity on heart sound spectra 318 -- 6.2.2 Frequency analysis of murmurs to diagnose valvular defects 319 -- 6.3 Estimation of the PSD 321 -- 6.3.1 Considerations in the computation of the ACF 321 -- 6.3.2 The periodogram 323 -- 6.3.3 The need for averaging PSDs 325 -- 6.3.4 The use of windows: spectral resolution and leakage 326 -- 6.3.5 Estimation of the ACF from the PSD 330 -- 6.3.6 Synchronized averaging of PCG spectra 331 -- 6.4 Measures Derived from PSDs 333 -- 6.4.1 Moments of PSD functions 334 -- 6.4.2 Spectral power ratios 337 -- 6.5 Application: Evaluation of Prosthetic Heart Valves 337 -- 6.6 Application: Fractal Analysis of VAG Signals 339 -- 6.6.1 Fractals and the 1/f model 339 -- 6.6.2 F D via power
 
spectral analysis 341 -- 6.6.3 Examples of synthesized fractal signals 341 -- 6.6.4 Fractal analysis of segments of VAG signals 342 -- 6.7 Application: Spectral Analysis of EEG Signals 345 -- 6.8 Remarks 349 -- 6.9 Study Questions and Problems 350 -- 6.10 Laboratory Exercises and Projects 351 -- References 353 -- 7 Modeling of Biomedical Signal-generating Processes and Systems 357 -- 7.1 Problem Statement 357 -- 7.2 Illustration of the Problem 358 -- 7.2.1 Motor-unit firing patterns 358 -- 7.2.2 Cardiac rhythm 358 -- 7.2.3 Formants and pitch in speech 359 -- 7.2.4 Patellofemoral crepitus 360 -- 7.3 Point Processes 360 -- 7.4 Parametric System Modeling 365 -- 7.5 Autoregressive or All-pole Modeling 369 -- 7.5.1 Spectral matching and parameterization 374 -- 7.5.2 Optimal model order 377 -- 7.5.3 AR and cepstral coefficients 384 -- 7.6 Pole-Zero Modeling 384 -- 7.6.1 Sequential estimation of poles and zeros 387 -- 7.6.2 Iterative system identification 389 -- 7.6.3 Homomorphic prediction and modeling 393 -- 7.7 Electromechanical Models of Signal Generation 395 -- 7.7.1 Modeling of respiratory sounds 396 -- 7.7.2 Modeling sound generation in coronary arteries 400 -- 7.7.3 Modeling sound generation in knee joints 402 -- 7.8 Electrophysiological Models of the Heart 404 -- 7.8.1 Electrophysiologica ...

Abstract
"The main subject area of the book is digital signal processing techniques for filtering, identification, characterization, classification, and analysis of biomedical signals with the aim of computer-aided diagnosis. The Third Edition will expand upon and add the topics listed below. Most of the additions will be worked into the existing chapters without affecting the overall organization of the book as established in the First and Second Editions. The exception will be Chapter 8 in the Second Edition, which will be split and reorganized into two chapters (8 and 9) with improved structure and flow of topics, more details of the advanced and adaptive signal processing techniques involved, and examples of application from current research and topics of interest in clinical applications"-- Provided by publisher.

Local Note
John Wiley and Sons

Subject Term
Signal processing.
 
Biomedical engineering.
 
Traitement du signal.
 
Génie biomédical.

Genre
Electronic books.

Added Author
Krishnan, Sridhar,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119825883


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book598832-1001R857 .S47 R365 2024Wiley E-Kitap Koleksiyonu