Model predictive control
by
 
Ding, Baocang, author.

Title
Model predictive control

Author
Ding, Baocang, author.

ISBN
9781119471455
 
9781119471318
 
9781119471424

Physical Description
1 online resource (xvii, 280 pages) : illustrations (some color)

Contents
1 Concepts 1 -- 1.1 PID and Model Predictive Control -- 1.2 Two-Layered Model Predictive Control -- 1.3 Hierarchical Model Predictive Control -- 2 Parameter Estimation and Output Prediction -- 2.1 Test Signal for Model Identification -- 2.1.1 Step Test -- 2.1.2 White Noise -- 2.1.3 Pseudo-Random Binary Sequence -- 2.1.4 Generalized Binary Noise -- 2.2 Step Response Model Identification -- 2.2.1 Model -- 2.2.2 Data Processing -- 2.2.3 Model Identification -- 2.2.4 Numerical Example -- 2.3 Prediction Based on Step Response Model and Kalman Filter -- 2.3.1 Steady-State Kalman Filter and Predictor -- 2.3.2 Steady-State Kalman Filter and Predictor Based on -- Step Response Model -- 3 Steady-State Target Calculation -- 3.1 RTO and External Target -- 3.2 Economic Optimization and Target Tracking Problem -- 3.2.1 Economic Optimization -- 3.2.2 Target Tracking Problem -- 3.3 Judging Feasibility and Adjusting Soft Constraint -- 3.3.1 Weight Method -- 3.3.2 Priority-Rank Method -- 3.3.3 Compromise between Adjusting Soft Constraints and Economic Optimization -- 4 Two-Layered DMC for Stable Processes -- 4.1 Open-Loop Prediction Module -- 4.2 Steady-State Target Calculation Module -- 4.2.1 Hard and Soft Constraints -- 4.2.2 Priority-rank of Soft Constraints -- 4.2.3 Feasibility Stage -- 4.2.4 Economic Stage -- 4.3 Dynamic Calculation Module -- 4.4 Numerical Example -- 5 Two-Layered DMC for Stable and Integrating Processes 125 -- 5.1 Open-Loop Prediction Module -- 5.2 Steady-State Target Calculation Module -- 5.2.1 Hard and Soft Constraints -- 5.2.2 Priority-rank of Soft Constraints -- 5.2.3 Feasibility Stage -- 5.2.4 Economic Stage -- 5.3 Dynamic Calculation Module -- 5.4 Numerical Example -- 6 Two-Layered DMC for State-Space Model -- 6.1 Artificial Disturbance Model -- 6.1.1 Basic Model -- 6.1.2 Controlled Variable as Additional State -- 6.1.3 Manipulated Variable as Additional State -- 6.1.4 Kalman Filter -- 6.2 Open-Loop Prediction Module -- 6.3 Steady-State Target Calculation Module -- 6.3.1 Constraints on Steady-State Perturbation Increment -- 6.3.2 Feasibility Stage -- 6.3.3 Economic Stage without Soft Constraint -- 6.4 Dynamic Calculation Module -- 6.5 Numerical Example -- 7 Offset-Free, Nonlinearity and Variable Structure in Two-Layered MPC -- 7.1 State Space Steady-State Target Calculation with Target Tracking 196 -- 7.1.1 Case All External Targets Having Equal Importance 198 -- 7.1.2 Case CV External Target Being More Important -- Than MV External Target -- 7.2 QP-based Dynamic Control and Offset-Free -- 7.3 Static Nonlinear Transformation -- 7.3.1 Principle of Nonlinear Transformation -- 7.3.2 Usual Nonlinear Transformations -- 7.4 Two-Layered MPC with Varying Degree of Freedom -- 7.4.1 Numerical Example without Varying Structure -- 7.4.2 Numerical Example with Varying Number of Manipulated Variables -- 7.5 Numerical Example with Output Collinearity -- 8 Two-Step Model Predictive Control for Hammerstein Model -- 8.1 Two-Step State Feedback MPC -- 8.2 Stability of Two-Step State Feedback MPC -- 8.3 Region of Attraction for Two-Step MPC: Semi-global Stability -- 8.3.1 System Matrix Having No Eigenvalue Outside of Unit Circle -- 8.3.2 System Matrix Having Eigenvalues Outside of Unit Circle -- 8.3.3 Numerical Example -- 8.4 Two-Step Output Feedback Model Predictive Control -- 8.5 Generalized Predictive Control: Basics -- 8.5.1 Output Prediction -- 8.5.2 Receding Horizon Optimization -- 8.5.3 Dead-Beat Property of Generalized Predictive Control 273 -- 8.5.4 On-line Identification and Feedback Correction -- 8.6 Two-Step Generalized Predictive Control -- 8.6.1 Unconstrained Algorithm -- 8.6.2 Algorithm with Input Saturation -- 8.6.3 Stability Results Based on Popov's Theorem -- 8.7 Region of Attraction for Two-Step Generalized Predictive Control 289 -- 8.7.1 State Space Description -- 8.7.2 Stability with Region of Attraction -- 8.7.3 Computation of Region of Attraction -- 8.7.4 Numerical Example -- 9 Heuristic Model Predictive Control for LPV Model 299 -- 9.1 A Heuristic Approach Based-on Open-Loop Optimization -- 9.2 Open-Loop MPC for Unmeasurable State -- 10 Robust Model Predictive Control 323 -- 10.1 A Cornerstone Method -- 10.1.1 KBM (Kothare-Balakrishnan-Morari) Formula -- 10.1.2 KBM (Kothare-Balakrishnan-Morari Controller) -- 10.1.3 Example: Generalizing to Networked Control -- 10.2 Invariant Set Trap -- 10.3 Prediction Horizon: Zero or One -- 10.3.1 One over Zero -- 10.3.2 One: Generalizing to Networked Control -- 10.4 Variant Feedback MPC -- 10.5 About Optimality -- 10.5.1 Constrained Linear Time Varying Quadratic Regulation with Near-Optimal Solution -- 10.5.2 Alternatives with Nominal Performance Cost -- 10.5.3 More Discussions -- 11 Output Feedback Robust Model Predictive Control -- 11.1 Model and Controller Descriptions -- 11.1.1 Controller for LPV Model -- 11.1.2 Controller for Quasi-LPV Model -- 11.2 Characterization of Stability and Optimality -- 11.2.1 Review of Quadratic Boundedness -- 11.2.2 Stability Condition -- 11.2.3 Optimality Condition -- 11.2.4 A Paradox for State Convergence -- 11.3 General Optimization Problem -- 11.3.1 Handling Physical Constraints -- 11.3.2 Current Augmented State -- 11.3.3 Some Usual Transformations -- 11.3.4 Handling Double Convex Combinations -- 11.4 Solutions to Output Feedback MPC -- 11.4.1 Full Online Method for LPV -- 11.4.2 Partial Online Method for LPV -- 11.4.3 Relaxed Variables in Optimization Problem -- 11.4.4 Alternative Forms Based on Congruence Transformation -- 11.4.5 Description of Bound on True State -- References -- Index.

Abstract
"Organized into two parts (algorithm and application/theory and scientific interpretation), this book focuses on the practical aspects of implementing predictive control as opposed to basic conceptual and theoretical understanding. Model Predictive Control (MPC) design in double-layered framework has already been adopted in industrial processes, and the book covers key topics in MPC theoretical studies which are related to the demand of industrial applications. This is a topic rarely systematically investigated in books, and the author's own experiences in industrial applications provide an original overview. Basic background knowledge of linear algebra, matrix theory, calculus, and mathematical statistics, are necessary requirements to appreciate the content."-- Provided by publisher.

Local Note
John Wiley and Sons

Subject Term
Predictive control.
 
Commande prédictive.
 
System Theory.
 
SCIENCE.

Genre
Electronic books.

Added Author
Yang, Yuanqing (College teacher),

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119471455


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book598917-1001TJ217.6 .D55 2024Wiley E-Kitap Koleksiyonu