Control and Safety Analysis of Intensified Chemical Processes
by
 
Patle, Dipesh Shikchand, editor.

Title
Control and Safety Analysis of Intensified Chemical Processes

Author
Patle, Dipesh Shikchand, editor.

ISBN
9783527843657
 
9783527843633
 
9783527843640

Physical Description
1 online resource (384 pages)

Contents
Preface -- Part I Overview and Background -- 1 Introduction 3 Dipesh Shikchand Patle and Gade Pandu Rangaiah -- 1.1 Process Intensification -- 1.2 Need for Control and Safety Analysis of Intensified Chemical Processes -- 1.3 Studies on Control and Safety Analysis of Intensified Chemical Processes -- 1.4 Scope and Organization of the Book -- 1.5 Conclusions -- References -- 2 Applications and Potential of Process Intensification in Chemical Process Industries 15 Chirla C.S. Reddy -- 2.1 Introduction -- 2.2 Benefits of Process Intensification Techniques -- 2.3 Static Mixers -- 2.4 Process Intensification for Separation Vessels -- 2.5 Process Intensification for Distillation -- 2.6 Process Intensification for Heating -- 2.6.1 Steam Injection Heater -- 2.6.2 Steam/Electric Heaters as a Replacement for Fired Heaters -- 2.6.3 Process Intensification for Flue Gas Heat Recovery -- 2.6.4 Process Heat Exchangers -- 2.6.5 Sonic Horn -- 2.7 Steam Compression -- 2.8 Process Intensification for Carbon Capture -- 2.9 Process Intensification for Vacuum Systems -- 2.10 Process Intensification for Water Deaeration -- 2.11 Process Intensification for Development of Inherently Safer Design (isd) -- 2.12 Process Intensification for Reducing Pressure Relief and Handling Requirements -- 2.12.1 Non-safety Instrumented Solutions for Pressure Relief Systems -- 2.12.2 Safety Instrumented System (SIS) Solutions for Reducing Pressure Relief Requirements -- 2.13 Process Intensification for Wastewater Recovery -- 2.14 Challenges of Process Intensification Techniques -- 2.15 Conclusions -- References -- Part II Procedures and Software for Simulation, Control and Safety Analysis -- 3 Simulation and Optimization of Intensified Chemical Processes 49 Zemin Feng and Gade Pandu Rangaiah -- 3.1 Introduction -- 3.2 Simulation of Chemical Processes -- 3.2.1 Usefulness of Process Simulation -- 3.2.2 Commercial Process Simulators -- 3.2.3 Free Process Simulators -- 3.2.4 Computational Methods for Process Simulation -- 3.3 Procedure for Simulation of (Intensified) Chemical Processes -- 3.3.1 Problem Analysis -- 3.3.2 Basic Process Flow Design -- 3.3.3 Process Intensification and Integration -- 3.3.4 Model Construction -- 3.3.5 Simulation and Convergence -- 3.3.6 Results Analysis -- 3.4 Optimization of (Intensified) Chemical Processes -- 3.4.1 Mathematical Optimization Methods -- 3.4.2 Optimization of Chemical Processes with a Process Simulator -- 3.4.2.1 Optimization Using MATLAB -- 3.4.2.2 Optimization Using Python -- 3.5 Challenges in the Simulation/Optimization of Intensified Chemical Processes -- 3.6 Case Study -- 3.6.1 Problem Analysis -- 3.6.2 Process Flow Design -- 3.6.3 Model Construction -- 3.6.4 Simulation and Convergence -- 3.6.4.1 Process Simulation -- 3.6.4.2 Economic Evaluation Criterion -- 3.6.4.3 Process Optimization -- 3.6.5 Results and Analysis -- 3.7 Conclusions -- References -- 4 Dynamic Simulation and Control of Intensified Chemical Processes 83 Zemin Feng and Gade Pandu Rangaiah -- 4.1 Introduction -- 4.2 Dynamic Simulation of Chemical Processes -- 4.2.1 Understanding Dynamic Simulation -- 4.2.2 Applications of Dynamic Simulation -- 4.2.3 Dynamic Simulation Software -- 4.3 Dynamic Simulation and Control Procedure -- 4.4 Dynamic Simulation and Control of Intensified Chemical Processes -- 4.4.1 Challenges Due to Process Intensification -- 4.5 Process Control -- 4.5.1 Controlled, Manipulated, and Disturbance Variables -- 4.5.2 Typical Control Loop -- 4.5.3 Control Degrees of Freedom -- 4.6 Case Study -- 4.6.1 Steady-state Simulation and Optimization -- 4.6.2 Preparation/Initialization for Dynamic Simulation -- 4.6.3 Control Structure Design -- 4.6.3.1 Composition Control Scheme -- 4.6.3.2 Temperature Control Scheme -- 4.6.4 Tuning of Controller Parameters -- 4.6.5 Analysis of Dynamic Simulation Results -- 4.7 Conclusions -- References -- 5 Safety Analysis of Intensified Chemical Processes 125 Masrina Mohd Nadzir, Zainal Ahmad, and Syamsul Rizal Abd Shukor -- 5.1 Introduction -- 5.2 Safety Analysis in Chemical Process Industry -- 5.2.1 Safety Analysis Tools -- 5.2.1.1 Hazard Identification -- 5.2.1.2 Risk Assessment -- 5.2.1.3 Inherently Safer Design (ISD) -- 5.2.1.4 Safety Instrumented Systems -- 5.2.1.5 Human Factors and Safety Culture -- 5.2.1.6 Regulatory Framework and Compliance -- 5.2.1.7 Monitoring and Continuous Improvement -- 5.3 Process Intensification and Safety Analysis -- 5.3.1 Impacts of Process Intensification on Safety -- 5.3.2 Safety Analysis in Intensified Process Design -- 5.3.2.1 Hazard Identification Techniques for Process Intensification Technologies -- 5.3.2.2 Risk Assessment for Process Intensification Technologies -- 5.3.3 Inherently Safer Design Principles Intensified Processes -- 5.4 Safety Management Systems for Intensified Processes -- 5.5 Safety Training and Competency for Intensified Processes -- 5.5.1 Importance of Safety Training and Competency -- 5.5.2 Developing Safety Training and Competency Programs -- 5.5.3 Utilizing a Blended Learning Approach -- 5.5.4 Assessing Training Effectiveness and Continual Improvement -- 5.5.5 Benefits of Effective Safety Training and Competency Management -- 5.6 Case Studies of Safety Analysis in Intensified Processes -- 5.7 Conclusions -- References -- Part III Control and Safety Analysis of Intensified Chemical Processes -- 6 Control of Hybrid Reactive-Extractive Distillation Systems for Ternary Azeotropic Mixtures 157 Zong Yang Kong and Hao-Yeh Lee -- 6.1 Introduction -- 6.2 Steady-state Design of the RED -- 6.3 Dynamic Simulation Setup -- 6.4 Inventory Control Setup -- 6.5 Sensitivity Analysis -- 6.6 Quality Control Structures -- 6.6.1 Control Structure 1 (CS 1) - Simple Temperature Control -- 6.6.2 Control Structure 2 (CS 2) - Triple Point Temperature Control -- 6.6.3 Control Structure 3 (CS 3) - Triple Point Temperature Control Using SVD Analysis -- 6.6.4 Feedforward Control Structure 3 (FF-CS 3) -- 6.7 Control Performance Evaluation -- 6.8 Conclusions -- Acknowledgements -- Acronyms -- Nomenclature -- References -- 7 Process Design and Control of Reactive Distillation in Recycle Systems 183 Mihai Daniel Moraru, Costin Sorin Bildea, and Anton Alexandru Kiss -- 7.1 Introduction -- 7.2 Design of Reactive Distillation Processes -- 7.3 Control of Reactive Distillation Processes -- 7.4 Case Study: RD Coupled with a Distillation-Reactor System and Recycle -- 7.4.1 Basis of Design and Basic Data -- 7.4.2 Process Design -- 7.4.3 Process Control -- 7.4.4 Discussion -- 7.5 Conclusions -- References -- 8 Dynamics and Control of Middle-vessel Batch Distillation with Vapor Recompression 209 Radhika Gandu, Akash Burolia, Dipesh Shikchand Patle, and Gara Uday Bhaskar Babu -- 8.1 Introduction -- 8.2 Conventional Middle-vessel Batch Distillation -- 8.2.1 A Systematic Simulation Approach of CMVBD -- 8.2.1.1 Model Equations -- 8.2.2 Constant Composition Control -- 8.3 Single-stage Vapor Recompression in Middle-vessel Batch Distillation -- 8.3.1 A Systematic Simulation Approach of SiVRMVBD -- 8.4 Performance Specifications -- 8.4.1 Energy Savings -- 8.4.2 Total Annual Cost -- 8.4.3 Greenhouse Gas Emissions -- 8.5 Results and Discussion -- 8.5.1 Conventional Middle-vessel Batch Distillation Column -- 8.5.1.1 Dynamic Composition Profiles -- 8.5.2 Single-stage Vapor Recompression in Middle-vessel Batch Distillation -- 8.5.3 Energetic, Economic, and Environmental Performance: CMVBD vs. SiVRMVBD -- 8.5.4 Constant Composition Control -- 8.5.4.1 SiVRMVBD-GSPI -- 8.5.5 Energetic, Economic, and Environmental Performance: CMVBD vs. Controlled CMVBD and SiVRMVBD -- 8.6 Conclusions -- References -- 9 Safety Analysis of Intensified Distillation Processes Using Existing and Modified Safety Indices 237 Savyasachi Shrikhande, Gunawant K. Deshpande, Gade Pandu Rangaiah, andDipeshShikchandPatle -- 9.1 Introduction -- 9.2 Safety Indices for Process Safety Assessment -- 9.3 Description of Distillation Systems -- 9.3.1 Conventional Sequence of Columns -- 9.3.2 Dividing-Wall Column -- 9.3.3 Dividing-Wall Column with Mechanical Vapor Recompression -- 9.4 Selection of Safety Indices -- 9.5 Results and Discussion -- 9.5.1 Conventional Sequence of Columns -- 9.5.2 Dividing-Wall Column -- 9.5.3 Dividing-Wall Column with Mechanical Vapor Recompression -- 9.5.4 Comparative Analysis -- 9.6 Survey of Engineers and Discussion of their Responses -- 9.7 Improved PRI -- 9.8 Conclusions.

Local Note
John Wiley and Sons

Subject Term
Chemical processes -- Safety measures.
 
Procédés chimiques -- Sécurité -- Mesures.

Added Author
Patle, Dipesh Shikchand,
 
Rangaiah, Gade Pandu,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527843657


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book599042-1001TP150 .S24 P38 2024Wiley E-Kitap Koleksiyonu