GaN power devices for efficient power conversion
by
 
Lidow, Alex, author.

Title
GaN power devices for efficient power conversion

Author
Lidow, Alex, author.

ISBN
9781394286980
 
9781394286973
 
9781394286966

Edition
Fourth edition.

Physical Description
1 online resource (xiii, 482 pages) : illustrations (chiefly color)

Contents
Foreword xi -- Acknowledgments xiii -- 1 GaN Technology Overview 1 -- 1.1 Silicon Power MOSFETs: 1976–2010 1 -- 1.2 The GaN Journey Begins 2 -- 1.3 GaN and SiC Compared with Silicon 2 -- 1.4 The Basic GaN Transistor Structure 6 -- 1.5 Building a GaN HEMT Transistor 11 -- 1.6 GaN Integrated Circuits 15 -- 1.7 Summary 21 -- References 22 -- 2 GaN Transistor Electrical Characteristics 25 -- 2.1 Introduction 25 -- 2.2 Device Ratings 25 -- 2.3 Gate Voltage 30 -- 2.4 On-Resistance (R DS(on)) 31 -- 2.5 Threshold Voltage 34 -- 2.6 Capacitance and Charge 35 -- 2.7 Reverse Conduction 38 -- 2.8 Thermal Characteristics 40 -- 2.9 Summary 42 -- References 42 -- 3 Driving GaN Transistors 45 -- 3.1 Introduction 45 -- 3.2 Gate Drive Voltage 47 -- 3.3 Gate Drive Resistance 48 -- 3.4 dv/dt Considerations 50 -- 3.5 di/dt Considerations 53 -- 3.6 Bootstrapping and Floating Supplies 56 -- 3.7 Transient Immunity 59 -- 3.8 Gate Drivers and Controllers for Enhancement-Mode GaN Transistors 61 -- 3.9 Cascode, Direct Drive, and Higher-Voltage Configurations 61 -- 3.10 Using GaN Transistors with Drivers or Controllers Designed for Si MOSFETs 67 -- 3.11 Driving GaN ICs 68 -- 3.12 Summary 69 -- References 70 -- 4 Layout Considerations for GaN Transistor Circuits 75 -- 4.1 Introduction 75 -- 4.2 Origin of Parasitic Inductance 76 -- 4.3 Minimizing Common-Source Inductance 77 -- 4.4 Minimizing Power-Loop Inductance in a Half-Bridge Configuration 79 -- 4.5 Paralleling GaN Transistors 85 -- 4.6 Summary 93 -- References 93 -- 5 GaN Reliability 95 -- 5.1 Introduction 95 -- 5.2 Getting Started with GaN Reliability 95 -- 5.3 Determining Wear-Out Mechanisms Using Test-to-Fail Methodology 95 -- 5.4 Using Test-to-Fail Results to Predict Device Lifetime in a System 98 -- 5.5 Wear-Out Mechanisms 99 -- 5.6 Mission-Specific Reliability Predictions 133 -- 5.7 Summary 150 -- References 150 -- 6 Thermal Management of GaN Devices 155 -- 6.1 Introduction 155 -- 6.2 Thermal Equivalent Circuits 155 -- 6.3 Cooling Methods 160 -- 6.4 System-Level Thermal Overview: Single FET 163 -- 6.5 System-Level Thermal Analysis: Multiple FETs 176 -- 6.6 Experimental Thermal Examples 182 -- 6.7 Summary 191 -- References 191 -- 7 Hard-Switching Topologies 195 -- 7.1 Introduction 195 -- 7.2 Hard-Switching Loss Analysis 196 -- 7.3 External Factors Impacting Hard-Switching Losses 217 -- 7.4 Frequency Impact on Magnetics 223 -- 7.5 Buck Converter Example 224 -- 7.6 Summary 245 -- References 245 -- 8 Resonant and Soft-Switching Converters 249 -- 8.1 Introduction 249 -- 8.2 Resonant and Soft-Switching Techniques 249 -- 8.3 Key Device Parameters for Resonant and Soft-Switching Applications 254 -- 8.4 High-Frequency Resonant Bus Converter Example 261 -- 8.5 Summary 269 -- References 271 -- 9 RF Performance 273 -- 9.1 Introduction 273 -- 9.2 Differences Between RF and Switching Transistors 275 -- 9.3 RF Basics 276 -- 9.4 RF Transistor Metrics 277 -- 9.5 Amplifier Design Using Small-Signal s-Parameters 284 -- 9.6 Amplifier Design Example 285 -- 9.7 Summary 292 -- References 292 -- 10 DC–DC Power Conversion 295 -- 10.1 Introduction 295 -- 10.2 DC–DC Converter Examples 295 -- 10.3 Summary 317 -- References 318 -- 11 Multilevel Converters 321 -- 11.1 Introduction 321 -- 11.2 Benefits of Multilevel Converters 321 -- 11.3 Experimental Examples 338 -- 11.4 Summary 348 -- References 348 -- 12 Class D Audio Amplifiers 351 -- 12.1 Introduction 351 -- 12.2 GaN Transistor Class D Audio Amplifier Example 355 -- 12.3 Summary 364 -- References 364 -- 13 High Current Nanosecond Laser Drivers for Lidar 367 -- 13.1 Introduction to Light Detection and Ranging (Lidar) 367 -- 13.2 Pulsed Laser Driver Overview 368 -- 13.3 Basic Design Process 378 -- 13.4 Hardware Driver Design 384 -- 13.5 Experimental Results 388 -- 13.6 Additional Considerations for Laser Transmitter Design 394 -- 13.7 Summary 399 -- References 399 -- 14 Motor Drives 403 -- 14.1 Introduction 403 -- 14.2 Motor Types 403 -- 14.3 Inverter 403 -- 14.4 Typical Applications 404 -- 14.5 Voltage Source Inverters and Motor Control Basics 404 -- 14.6 Field-Oriented Control Basics 408 -- 14.7 Current Measurement Techniques 410 -- 14.8 Power Dissipation in Motor and Inverter 411 -- 14.9 Silicon Inverter Limitations 412 -- 14.10 LC Filter Dissipation 412 -- 14.11 Torque Sixth Harmonic Dissipation 413 -- 14.12 GaN Advantage 413 -- 14.13 GaN Switching Behavior 413 -- 14.14 Dead Time Elimination Effect 414 -- 14.15 PWM Frequency Increase Effect 415 -- 14.16 Layout Considerations for Motor Drives 420 -- 14.17 GaN Devices for Motor Applications 421 -- 14.18 Application Examples 421 -- 14.19 Summary 430 -- References 430 -- 15 GaN Transistors and Integrated Circuits for Space Applications 433 -- 15.1 Introduction 433 -- 15.2 Failure Mechanisms in Electronic Components Used in Space Applications 433 -- 15.3 Standards for Radiation Exposure and Tolerance 434 -- 15.4 Gamma Radiation 434 -- 15.5 Neutron Radiation (Displacement Damage) 437 -- 15.6 Single-Event Effects (SEE) Testing 438 -- 15.7 Performance Comparison Between GaN Transistors and Rad-Hard Si MOSFETs 440 -- 15.8 GaN Integrated Circuits 441 -- 15.9 Summary 445 -- References 445 -- 16 Replacing Silicon Power MOSFETs 449 -- 16.1 Introduction: GaN, Rapid Growth/Great Future 449 -- 16.2 New Capabilities Enabled by GaN Devices 449 -- 16.3 GaN Devices Are Easy to Use 453 -- 16.4 GaN Cost Reduction over Time 454 -- 16.5 GaN Devices Are Reliable 454 -- 16.6 Future Direction of GaN Devices 455 -- 16.7 Summary 456 -- References 456 -- Appendix Glossary of Terms 459 -- Index 477.

Abstract
"Renewable energy relies on efficient power conversion. GaN (gallium nitride) transistors deliver lower switching losses than Silicon and Silicon Carbide, thus enabling power systems with higher power density, a critical success factor to favour faster adoption over conventional alternatives."-- Provided by publisher.

Local Note
John Wiley and Sons

Subject Term
Field-effect transistors.
 
Power transistors.
 
Gallium nitride.
 
Transistors à effet de champ.
 
Transistors de puissance.
 
Nitrure de gallium.

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394286980


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book599373-1001TK7871.95 .L53 2025Wiley E-Kitap Koleksiyonu