Polypropylene cable insulation
by
 
Du, Boxue, 1961- author.

Title
Polypropylene cable insulation

Author
Du, Boxue, 1961- author.

ISBN
9781394234462
 
9781394234448
 
9781394234455

Physical Description
1 online resource (xv, 379 pages) : illustrations (chiefly color)

Contents
About the Author xi -- Preface xiii -- Acknowledgements xv -- 1 Introduction 1 -- 1.1 Background 1 -- 1.2 State of the Art of PP Modification Method 6 -- 1.2.1 Nanocomposites 6 -- 1.2.2 Polymer Blending 9 -- 1.2.3 Chemical Copolymerization and Grafting 10 -- 1.2.4 Crystallization Regulation 11 -- 1.3 Effect of Microstructures on Dielectric Properties 13 -- 1.3.1 Effect of Molecular Chain Structures 13 -- 1.3.2 Effect of Aggregate Structures 15 -- 1.4 Effect of Operating Conditions on Dielectric Properties 17 -- 1.4.1 Effect of Aging Treatment 17 -- 1.4.2 Effect of Thermal Stress 18 -- 1.4.3 Effect of Voltage Stress 18 -- 1.5 Content of This Book 19 -- References 21 -- Part I Polypropylene Insulation for HVDC Cables 29 -- 2 Space Charge and Dielectric Breakdown 31 -- 2.1 Introduction 31 -- 2.2 Effect of Elastomer on Space Charge and Breakdown Characteristics 32 -- 2.3 Effect of Inorganic Nanofiller on Space Charge and Dielectric Breakdown 45 -- 2.3.1 Metal Oxide Nanoparticles 45 -- 2.3.2 Nanoplatelets 52 -- 2.4 Effect of Organic Compounds on Space Charge and Dielectric Breakdown 64 -- 2.4.1 Introduction 64 -- 2.4.2 Voltage Stabilizer 64 -- 2.4.3 Antioxidant Additives 80 -- 2.5 Conclusion and Outlook 92 -- References 92 -- 3 Electrical Treeing Phenomenon 103 -- 3.1 Introduction 103 -- 3.2 Electrical Treeing Under Impulse Superimposed on DC Voltage 105 -- 3.2.1 Effects of Impulse Amplitude 106 -- 3.2.2 Effects of Impulse Frequency 111 -- 3.2.3 Effects of DC Voltage Amplitude 112 -- 3.3 Effect of Ambient Temperature on Electrical Treeing 120 -- 3.3.1 Effect of Low Temperature 120 -- 3.3.2 Effect of Operating Temperature 129 -- 3.4 Effect of Bending Deformation on Electrical Treeing 141 -- 3.4.1 Effect of Bending Deformation 141 -- 3.4.2 Effect of Elastic Phase 148 -- 3.5 Methods for Suppressing Electrical Treeing 154 -- 3.5.1 Effect of the Type of Voltage Stabilizer 157 -- 3.5.2 Effect of the Content of Voltage Stabilizer 160 -- 3.6 Conclusion and Outlook 165 -- References 166 -- 4 Insulation Thickness Optimization for HVDC Cables 173 -- 4.1 Introduction 173 -- 4.1.1 Development of Insulation Thickness of HVDC Cables 173 -- 4.1.2 Advantages of Insulation Thinning 174 -- 4.2 Electric Field Distribution Calculation Model for HVDC Cables 174 -- 4.2.1 Classical Electromagnetic Theoretical Model 174 -- 4.2.2 Bipolar Electronic-Ionic Charge Transport Model 178 -- 4.2.2.1 Charge Generation 179 -- 4.2.2.2 Charge Transport 179 -- 4.2.2.3 Charge Recombination 182 -- 4.2.2.4 Charge Extraction 182 -- 4.3 Space Charge and Electric Field Under DC Voltage 182 -- 4.4 Space Charge and Electric Field Under Polarity Reversal Voltage 187 -- 4.4.1 Effect of Temperature Gradients 188 -- 4.4.2 Effect of Polarity Reversal Periods 194 -- 4.5 Insulation Thickness Optimization for HVDC Cables 198 -- 4.5.1 Theoretical Design and Verification of Insulation Thickness of dc Cable 198 -- 4.5.1.1 Design Method of Insulation Thickness of HVDC Cables 199 -- 4.5.1.2 Analysis and Calculation of Insulation Thickness of HVDC Cables 200 -- 4.5.1.3 Verification of Insulation Thickness of DC Cable 203 -- 4.5.2 Insulation Thickness Optimization Based on Modified BEICT Model 207 -- 4.6 Conclusions 214 -- References 214 -- Part II Polypropylene Insulation for HVAC Cables 219 -- 5 Polarization and Dielectric Relaxation 221 -- 5.1 Introduction 221 -- 5.2 Effect of Blending Modification 225 -- 5.2.1 FDS of PP Blend Insulation 225 -- 5.2.2 Effect on Dipole Orientational Polarization 228 -- 5.2.3 Effect on Carrier Hopping Polarization 230 -- 5.3 Effect of Monomer Grafting 233 -- 5.3.1 FDS of Grafting PP Insulation 238 -- 5.3.2 Effect on Dipole Orientational Polarization 240 -- 5.3.3 Effect on Carrier Hopping Polarization 242 -- 5.4 Effect of Thermal Ageing 245 -- 5.4.1 FDS of Thermal-Aged PP Insulation 245 -- 5.4.2 Effect on Dipole Orientational Polarization 247 -- 5.4.3 Effect on Carrier Hopping Polarization 249 -- 5.5 Conclusion and Outlook 252 -- References 252 -- 6 AC Electrical Treeing and Dielectric Breakdown 257 -- 6.1 Introduction 257 -- 6.2 Electrical Treeing Dependent on Crystalline Morphology 260 -- 6.2.1 Crystalline Morphology 260 -- 6.2.2 Effect on Electrical Tree 263 -- 6.2.3 Effect on AC Breakdown 269 -- 6.3 An Insight into Electrical Tree Growth Within Heterogeneous Crystalline Structure 273 -- 6.3.1 Mechanism of Heterogeneous Crystalline Structure 273 -- 6.3.2 Heterogeneous Crystalline Structure Modulation Enhancing Dielectric Strength 281 -- 6.3.3 Electric Field Simulation of Heterogeneous Crystalline Structure 291 -- 6.3.3.1 Heterogeneous Mesoscopic Structure Simulation 291 -- 6.3.3.2 Electric Field Simulation in Mesoscopic Structure 294 -- 6.4 Methods for Suppressing Electrical Treeing 297 -- 6.4.1 Effect of Nucleating Agent and Cooling Rate on Dielectric Property of PP/POE 297 -- 6.4.2 Enhanced Dielectric Breakdown Property of Polypropylene Based on Mesoscopic Structure Modulation by Crystal Phase Transformation 310 -- 6.5 Conclusions 325 -- References 327 -- 7 Electrothermal Aging and Lifetime Modeling 333 -- 7.1 Introduction 333 -- 7.2 Aging Mechanism and Lifetime Models 334 -- 7.2.1 Physical Lifetime Models 334 -- 7.2.1.1 Thermodynamic Models 335 -- 7.2.1.2 Space-Charge-Based Models 338 -- 7.2.1.3 PD-Induced Damage Model 341 -- 7.2.2 Phenomenological Lifetime Models 343 -- 7.2.2.1 Accelerated Life Tests Under Constant Stress 343 -- 7.2.2.2 Accelerated Life Tests Under Step Stress 344 -- 7.2.2.3 Single-Stress Electrical Lifetime Models 345 -- 7.2.2.4 Single-Stress Thermal Lifetime Models 347 -- 7.2.2.5 Combined Electrothermal Lifetime Models 349 -- 7.3 Thermal Aging 352 -- 7.3.1 Effect on Physical-Chemical Properties 352 -- 7.3.1.1 FT-IR Test 352 -- 7.3.1.2 XRD Test 353 -- 7.3.1.3 DSC Test 354 -- 7.3.1.4 SEM Test 355 -- 7.3.2 Effect on Mechanical and Electrical Properties 355 -- 7.3.2.1 Mechanical Test 355 -- 7.3.2.2 Conductivity Test 357 -- 7.3.2.3 FDS Test 358 -- 7.3.2.4 AC Breakdown Test 359 -- 7.3.3 Lifetime Prediction Under Thermal Stress 360 -- 7.3.3.1 Lifetime prediction model 360 -- 7.3.3.2 Validation of Prediction Model 362 -- 7.4 Electrical-Thermal Aging 363 -- 7.4.1 Breakdown Under Electrical-Thermal Stress 363 -- 7.4.2 Lifetime Models and Prediction 367 -- 7.5 Conclusions 370 -- References 371 -- Index 375.

Abstract
"Polypropylene, also known as polypropene or PP, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene. It is a form of thermoplastic and is typically used as a wire insulation. PP is similar to Polyethylene, (PE), but PP is a harder compound. Since it is a harder compound, PP can be used on thin wall applications. PP-based material is considered to be the most promising environmentally friendly cable insulation, due to its no-crosslinking, excellent insulation performance and high melting point. It can be predicted that in the near future, PP cable insulation can completely replace the traditional cross-linked polyethylene (XLPE) insulation."-- Provided by publisher.

Local Note
John Wiley and Sons

Subject Term
Electric cables -- Insulation.
 
Polypropylene.
 
Câbles électriques -- Isolation.
 
Polypropylène.

Added Author
Li, Zhonglei,

Electronic Access
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394234462


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book599513-1001TK3351 .D75 2025Wiley E-Kitap Koleksiyonu