Food losses, sustainable postharvest and food technologies
by
 
Galanakis, Charis M.

Title
Food losses, sustainable postharvest and food technologies

Author
Galanakis, Charis M.

ISBN
9780128232514
 
9780128219126

Publication Information
London : Academic Press, 2021.

Physical Description
1 online resource

Contents
Front Cover -- Food Losses, Sustainable Postharvest and Food Technologies -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Fruit and vegetable waste at domiciliary level: what is the panorama? -- 1.1 Introduction -- 1.2 Methodology -- 1.3 Results and discussion -- 1.3.1 Vegetable waste: applied methodologies -- 1.3.2 Vegetable waste: participants and results -- 1.3.3 Trends to solve the vegetable waste -- 1.4 Final considerations -- References -- 2 Fruit and vegetable waste in retail: methodological pathways, scenarios, and reduction strategies -- 2.1 Introduction -- 2.2 Methodology -- 2.3 Results and discussion -- 2.3.1 Waste in retail: applied methodologies -- 2.3.2 Waste in retail: results found -- 2.3.3 Strategies for reducing waste and future prospects -- 2.4 Conclusion -- References -- 3 Quality of fresh-cut products as affected by harvest and postharvest operations -- 3.1 Introduction -- 3.2 Fresh-cut produces -- 3.3 Marketing trends -- 3.4 Fresh-cut processing operations -- 3.4.1 Harvesting and receiving of fruits and vegetables -- 3.4.2 Sorting and grading -- 3.4.3 Peeling, coring, and cutting -- 3.4.4 Washing and sanitation -- 3.4.5 Packaging -- 3.4.6 Record-keeping and traceability -- 3.5 Factor affecting the quality of fresh-cut fruits and vegetables -- 3.5.1 Preharvesting factors -- 3.5.1.1 Cultural practices -- 3.5.1.2 Climatic conditions -- 3.5.1.3 Maturation, ripening, and senescence -- 3.5.1.4 Overall planning and management -- 3.5.2 Postharvesting factor affecting the quality of fresh cuts -- 3.5.2.1 Water contamination -- 3.5.2.2 Microbial growth -- 3.5.2.3 Nutrient and color degradation -- 3.5.2.4 Packaging conditions and materials -- 3.5.2.5 Physical environment -- 3.5.2.6 Storage -- 3.5.2.7 Humidity and time -- 3.5.3 Preharvest strategies to maintain the quality of product.
 
3.5.4 Postharvest strategies to maintain the product quality -- 3.5.4.1 Modified atmosphere packaging -- 3.5.4.2 Edible coating -- 3.5.4.3 Ozone -- 3.5.4.4 Electron beam -- 3.5.4.5 Gamma radiations -- 3.5.4.6 Ultraviolet light -- 3.5.4.7 Pulsed light -- 3.5.4.8 Cold plasma -- 3.5.4.9 Ultrasound -- 3.5.4.10 Acidic electrolyzed water -- 3.5.4.11 Nanotechnology -- 3.5.4.12 Bacteriophage -- 3.5.4.13 Bacteriocins -- 3.5.4.14 Bioprotective microorganism -- 3.6 Conclusion -- References -- 4 Disinfecting agents for controlling fruits and vegetable diseases after harvest -- 4.1 Introduction -- 4.2 Chlorine -- 4.2.1 Inactivation mechanism -- 4.2.2 Postharvest application -- 4.2.3 Regulatory standards -- 4.3 Chlorine dioxide -- 4.3.1 Inactivation mechanism -- 4.3.2 Postharvest application -- 4.3.3 Regulatory standards -- 4.4 Ozone -- 4.4.1 Inactivation mechanism -- 4.4.2 Postharvest application -- 4.4.3 The novel ozone application system -- 4.4.4 Regulatory standards -- 4.5 Ethanol -- 4.5.1 Postharvest application -- 4.5.2 Combined technologies -- 4.5.3 Regulatory standards -- 4.6 Organic acids -- 4.6.1 Mechanism of disinfection -- 4.6.2 Application -- 4.7 Hydrogen peroxide -- 4.7.1 Mechanism of disinfection -- 4.7.2 Application -- 4.8 Electrolyzed water -- 4.8.1 Principle and mechanism for production of electrolyzed water -- 4.8.2 Principle and mechanism of disinfection of fruit and vegetables -- 4.8.3 Application -- 4.9 Conclusions -- Symbols and Abbreviations -- References -- 5 Alternative management technologies for postharvest disease control -- 5.1 Introduction -- 5.2 Fruits: health benefits and production challenges -- 5.3 Pathogens: traditional disease management -- 5.4 Postharvest diseases: alternative management -- 5.4.1 Irradiation -- 5.4.2 Chitosan -- 5.4.3 Heat treatment -- 5.4.4 Ultrasound technology -- 5.4.4.1 Ultrasonic nebulization.
 
5.4.5 Antagonists microbial -- 5.4.5.1 Competition -- 5.4.5.2 Nutrient competition -- 5.4.5.3 Competition for space -- 5.4.5.4 Antibiosis -- 5.4.5.5 Lytic enzyme production -- 5.4.5.6 Induction of host resistance -- 5.4.5.7 Organic volatile compounds -- 5.4.6 Ultraviolet treatments -- 5.4.7 Plant extracts -- 5.5 Conclusion and future perspectives -- References -- 6 Advances in assessing product quality -- 6.1 Introduction -- 6.1.1 Global Food Safety Initiative -- 6.1.2 British Retail Consortium -- 6.1.3 International Food Standard -- 6.1.4 Safe Quality Food 2000 -- 6.1.5 Hazard Analysis and Critical Control Point certification -- 6.1.6 International Organization for Standardization -- 6.1.7 ISO 22000:2005 -- 6.1.8 Quality parameters -- 6.2 Advances in product quality assessment -- 6.2.1 Computer vision for quality assessment -- 6.2.2 Principles of computer vision technology -- 6.3 Computer vision in the food area -- 6.4 Computer vision with sonar or acoustic response -- 6.5 Computer vision technology as a quality checker -- 6.6 Three-dimensional technique -- 6.7 Hyperspectral imaging -- 6.8 Soft X-ray imaging -- 6.9 Odor imaging -- 6.10 Ultrasound technology for quality assessment -- 6.11 Low-intensity ultrasound -- 6.12 Advantages of ultrasound technology -- 6.13 Nanotechnology for food-packaging and food-quality assessment -- 6.13.1 Protective packaging -- 6.13.1.1 Antimicrobial and antifungal protection -- 6.13.1.2 Protection from oxygen and other environmental factors -- 6.14 Detecting specific gases developed from food spoiling -- 6.14.1 Nanotechnology in quality food assessment -- References -- 7 Emerging nondestructive technologies for quality assessment of fruits, vegetables, and cereals -- 7.1 Introduction -- 7.2 Safety and quality of food -- 7.3 Assessment of food (fruits, vegetables, cereals) quality by nondestructive techniques.
 
7.4 Nondestructive technique applications for quality analysis of fruits, vegetables, and cereals -- 7.4.1 Near-infrared and nuclear magnetic resonance spectroscopy -- 7.4.1.1 Application of near-infrared on food quality attributes of fruits, vegetables, and cereals -- 7.4.2 Fourier-transform infrared spectroscopy -- 7.4.2.1 Application of Fourier-transform infrared spectroscopy on food quality attributes of fruits, vegetables, and cereal -- 7.4.3 Hyperspectral imaging -- 7.4.3.1 Application of hyperspectral imaging on food quality attributes of fruits, vegetables, and cereals -- 7.4.4 Computerized X-ray tomography -- 7.4.4.1 Application of computerized X-ray tomography on food quality attributes of fruits, vegetables, and cereals -- 7.4.5 E-nose -- 7.4.5.1 Application of e-nose on food quality attributes of fruits, vegetables, and cereals -- 7.4.6 Computer vision system -- 7.4.6.1 Application of computer vision system on food quality attributes of fruits, vegetables, and cereals -- 7.5 Statistical methods -- 7.6 Design of nondestructive tool in food industries -- 7.7 Conclusion -- References -- 8 Effect of ultraviolet irradiation on postharvest quality and composition of foods -- 8.1 Introduction -- 8.2 Ultraviolet radiation -- 8.3 Advantages of ultraviolet radiation -- 8.3.1 Microbial inactivation -- 8.3.2 Stimulation of beneficial responses in fruits and vegetables when applied at hormetic doses -- 8.4 Effects of UV-C radiation on postharvest quality of fruits and vegetables -- 8.4.1 Germicidal effect of UV-C radiation on postharvest disease -- 8.4.2 Effect of UV-C radiation on postharvest quality -- 8.4.2.1 Enhance bioactive compounds -- 8.4.2.2 Delay ripening and senescence -- 8.4.2.2.1 Suppress ethylene production -- 8.4.2.2.2 Maintain firmness -- 8.4.2.2.3 Changes in color -- 8.4.2.3 Adverse effects.
 
8.5 Effect of UV-C radiation on fresh-cut fruits and vegetables -- 8.6 Effects of UV radiation on quality and composition of foods -- 8.6.1 Nutritional composition of fruit juice -- 8.6.2 Nutritional composition of meat products -- 8.6.3 Nutritional composition of milk and dairy products -- 8.7 Conclusions -- References -- 9 Postharvest technology for advancing sustainable bioenergy production for food processing and reduction of postharvest losses -- 9.1 Introduction -- 9.2 Biomass residues from the starch crops and prospects for bioenergy conversions -- 9.2.1 Postharvest technology for the starch crops and related biomass residues -- 9.2.2 Conversion routes for residues into bioenergy products -- 9.2.2.1 Bioethanol -- 9.2.2.2 Biogas -- 9.3 Estimations of primary residues capacities for biofuel production and derived benefits to industrial developments -- 9.3.1 Conceptual approach -- 9.3.1.1 Estimating available primary biomass residues -- 9.3.1.2 Biogas or bioethanol potentials -- 9.3.1.3 Starch extraction process energy demands and product yields -- 9.4 Results and implications -- 9.4.1 Primary residues-based biogas and bioethanol potentials -- 9.4.2 Commercial starch production capacities -- 9.4.3 Electricity and transport/engine fuel capacities -- 9.4.4 Comparative benefits of the residues-bioenergies to industrial developments in the starch industries -- 9.5 Discussion -- 9.5.1 Starch crops food-bioenergy prospects -- 9.5.2 Profitability constraints to the residues-bioenergy developments -- 9.6 Conclusion -- Acknowledgments -- References -- 10 Nanoscience and nanotechnology regarding food packaging and nanomaterials to extending the postharvest life and the shel... -- 10.1 Introduction -- 10.2 Food packaging built with nanotechnology -- 10.3 Synthesis of food nanopackaging from organic raw material.

Subject Term
Crops -- Postharvest losses -- Prevention.
 
Crops -- Postharvest technology.
 
Food industry and trade -- Waste minimization.
 
Food supply -- Environmental aspects.
 
Cultures -- Pertes après récolte -- Prévention. (CaQQLa)201-0203738
 
Cultures -- Technologie après récolte. (CaQQLa)201-0145781
 
Aliments (CaQQLa)201-0001299 -- Approvisionnement (CaQQLa)201-0001299 -- Aspect de l'environnement. (CaQQLa)201-0374355
 
Crops -- Postharvest losses -- Prevention (OCoLC)fst00884050
 
Crops -- Postharvest technology (OCoLC)fst00884051
 
Food industry and trade -- Waste minimization (OCoLC)fst00930951
 
Food supply -- Environmental aspects (OCoLC)fst00931202
 
Voedingsmiddelentechnologie.
 
Duurzaamheid.
 
Nanotechnologie.

Added Author
Galanakis, Charis M.

Electronic Access
ScienceDirect https://www.sciencedirect.com/science/book/9780128219126


LibraryMaterial TypeItem BarcodeShelf Number[[missing key: search.ChildField.HOLDING]]Status
Online LibraryE-Book600582-1001XX(600582.1)Elsevier E-Kitap Koleksiyonu