Cover image for High performance polymers and their nanocomposites
Title:
High performance polymers and their nanocomposites
Author:
P. M., Visakh, editor.
ISBN:
9781119363811

9781119363880

9781119363910

9781119363651
Physical Description:
1 online resource
Contents:
Preface xv ; 1 High-Performance Polymer Nanocomposites and Their Applications: State of Art and New Challenges 1 PM Visakh ; 1.1 Liquid Crystal Polymers 1 ; 1.2 Polyamide 4, 6, (PA4,6) 3 ; 1.3 Polyacrylamide 4 ; 1.4 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-Imide) 5 ; 1.5 Thermoplastic Polyimide 5 ; 1.6 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) 7 ; 1.7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties 9 ; 1.8 Poly(ethylene Terephthalate)-PET and Poly(ethylene Naphthalate)-PEN 11 ; 1.9 High-Performance Oil Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxydized Natural Rubber (ENR) 14 ; 1.10 High Performance Unsaturated Polyester/f-MWCNTs Nanocomposites Induced by F- Graphene Nanoplatelets 15 ; 2 Liquid Crystal Polymers 27 Andreea Irina Barzic, Raluca Marinica Albu and Luminita Ioana Buruiana ; 2.1 Introduction and History 27 ; 2.2 Polymerization 29 ; 2.2.1 Synthesis of Lyotropic LC Polymers 30 ; 2.2.2 Synthesis of Thermotropic LC Polymers 31 ; 2.3 Properties 32 ; 2.3.1 Rheology 32 ; 2.3.2 Dielectric Behavior 35 ; 2.3.3 Magnetic Properties 36 ; 2.3.4 Mechanical Properties 36 ; 2.3.5 Phases and Morphology 39 ; 2.4 Processing 41 ; 2.4.1 Injection Molding 41 ; 2.4.2 Extrusion 42 ; 2.4.3 Free Surface Flow 43 ; 2.4.4 LC Polymer Fiber Spinning 44 ; 2.5 Blends Based on Liquid Crystal Ppolymers 44 ; 2.6 Composites of Liquid Crystal Polymers 46 ; 2.7 Applications 49 ; 2.7.1 LC Polymers as Optoelectronic Materials 49 ; 2.7.2 Liquid Crystalline Polymers in Displays 50 ; 2.7.3 Sensors and Actuators 51 ; 2.8 Environmental Impact and Recycling 52 ; 2.9 Concluding Remarks and Future Trends 54 ; Acknowledgment 54 ; 3 Polyamide 4,6, (PA4,6) 59 Emel Kuram and Zeynep Munteha Sahin ; 3.1 Introduction and History 59 ; 3.2 Polymerization and Fabrication 60 ; 3.3 Properties 69 ; 3.4 Chemical Stability 72 ; 3.5 Compounding and Special Additives 72 ; 3.6 Processing 73 ; 3.7 Applications 83 ; 3.8 Blends of Polyamide 4,6, (PA4,6) 84 ; 3.9 Composites of Polyamide 4,6, (PA4,6) 89 ; 3.10 Nanocomposites of Polyamide 4,6, (PA4,6) 90 ; 3.11 Environmental Impact and Recycling 94 ; 3.12 Conclusions 98 ; 4 Polyacrylamide (PAM) 105 Małgorzata Wiśniewska ; 4.1 Introduction and History 105 ; 4.2 Polymerization and Fabrication 107 ; 4.3 Properties 110 ; 4.4 Chemical Stability 111 ; 4.5 Compounding and Special Additives 112 ; 4.6 Processing 113 ; 4.7 Applications 114 ; 4.8 Blends of Polyacrylamide 116 ; 4.9 Composites of Polyacrylamide 118 ; 4.10 Nanocomposites of Polyacrylamide 119 ; 4.11 Environmental Impact and Recycling 121 ; 4.12 Conclusions 122 ; 5 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-imide) 133 Dhorali Gnanasekaran ; 5.1 Introduction 134 ; 5.2 Experimental 136 ; 5.3 Results and Discussion 138 ; 5.4 Conclusions 145 ; 6 Thermoplastic Polyimide (TPI) 149 Xiantao Feng and Jialei Liu ; 6.1 Introduction and History 149 ; 6.2 Polymerization and Fabrication 150 ; 6.2.1 Thermoplastic Polyimides Based on BEPA 150 ; 6.2.2 Thermoplastic Polyimides based on PMDA 153 ; 6.2.3 Thermoplastic Polyimides Based on BTDA 154 ; 6.2.4 Thermoplastic Polyimides Based on ODPA 157 ; 6.2.5 Thermoplastic Polyimides Based on BPDA 157 ; 6.2.6 Thermoplastic Copolyimides 158 ; 6.3 Properties 160 ; 6.3.1 TPI Based on BEPA 160 ; 6.3.2 Thermoplastic Polyimides based on PMDA 163 ; 6.3.3 TPI Based on ODPA 163 ; 6.3.4 Thermoplastic Polyimides Based on BPDA 168 ; 6.3.5 Thermoplastic Copolyimides 170 ; 6.4 Chemical Stability 170 ; 6.4.1 Hydrolytic Stability 170 ; 6.4.2 Oxidative Stability 174 ; 6.5 Compounding 175 ; 6.5.1 Chloromethylation 175 ; 6.5.2 Sulfonation 178 ; 6.5.3 Phosphorylation 178 ; 6.5.4 Bromination 178 ; 6.5.5 Arylation 181 ; 6.6 Processing 181 ; 6.6.1 Injection Molding 181 ; 6.6.2 Compression Molding 182 ; 6.6.3 Extrusion Molding 184 ; 6.6.4 Coating 184 ; 6.6.5 Spinning [40] 186 ; 6.7 Applications 186 ; 6.7.1 Membranes 186 ; 6.7.2 Adhesives 188 ; 6.7.3 Composites 189 ; 6.7.3.1 Skybond 190 ; 6.7.4 Engineering Plastics 190 ; 6.7.4.1 VESPEL Plastics 190 ; 6.7.4.2 ULTEM Plastics [48, 49] 191 ; 6.7.4.3 AURUM Plastics [50] 192 ; 6.7.4.3 Ratem Plastics [51] 192 ; 6.8 Blends of Thermoplastic Polyimide (TPI) 193 ; 6.8.1 TPI Blends with TPI 193 ; 6.8.2 Polyamic Acid Blending 195 ; 6.9 Composites of Thermoplastic Polyimide (TPI) 196 ; 6.9.1 LaRC Composites 197 ; 6.9.2 Skybond 202 ; 6.9.3 PAI Polyamide-Imide Composites 205 ; 6.10 Nanocomposites of Thermoplastic Polyimide (TPI) 208 ; 6.10.1 TPI/silver Nanocomposite 208 ; 6.10.2 TPI/Fe-FeO Nanocomposite 210 ; 6.10.3 TPI/Carbon Nanocomposites 211 ; 6.10.4 TPI/CF/TiO2 Nanocomposite 214 ; 6.11 Environmental Impact and Recycling 214 ; 6.12 Conclusions 215 ; 7 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) -- A Review 221 E. Dhanumalayan and Girish M Joshi ; 7.1 Introduction 221 ; 7.2 Properties of PTFE 223 ; 7.2.1 Physical Properties of PTFE 223 ; Surface Properties 223 ; 7.2.2 Tribological Property of PTFE Surface 224 ; 7.2.3 Mechanical Properties of PTFE 226 ; 7.2.4 Chemical Properties of PTFE 228 ; Solubility of PTFE 228 ; 7.2.5 Thermal Properties of PTFE 228 ; Thermal transport property of PTFE composites 229 ; 7.2.6 Electrical Properties of PTFE 229 ; Dielectric property of PTFE 229 ; 7.2.7 Optical and Spectral Properties of PTFE 230 ; 7.3 Processing and Casting Techniques of PTFE 231 ; 7.3.1 Casting of PTFE by Melt-Processing Method 232 ; 7.3.2 Sintering of PTFE 233 ; 7.3.3 Molding Techniques of PTFE 233 ; 7.3.4 Casting of PTFE by Extrusion 236 ; 7.3.5 Solution Blending of PTFE 237 ; 7.3.6 PTFE Coating Methods 238 ; 7.4 Applications of PTFE in Various Fields 238 ; 7.4.1 PTFE in Automotive Industries 238 ; 7.4.2 PTFE in Petrochemical and Power Industries 239 ; 7.4.3 PTFE in Aerospace Industries 240 ; 7.4.4 PTFE in Food Processing Industries 241 ; 7.4.5 PTFE Applications in Chemical Industries 242 ; 7.4.6 PTFE in Biomedical and Pharmaceutical Applications 242 ; 7.4.7 PTFE in Electrical Applications 243 ; 7.4.8 PTFE for Defense Applications 243 ; 7.4.9 Application of PTFE Ice-Phobic Surfaces 243 ; 7.4.10 Application of PTFE in Water and Air Purification Process 244 ; 7.5 Different Forms of PTFE 244 ; 7.5.1 Fine Powder of PTFE for Foaming Applications 244 ; 7.5.2 Granular Form of PTFE 245 ; 7.5.3 Resin Form of PTFE 245 ; 7.5.4 Paste Form of PTFE 245 ; 7.5.5 Emulsion Form of PTFE 246 ; 7.6 Various Grades of PTFE 246 ; 7.6.1 Carbon-Reinforced PTFE 246 ; 7.6.2 Glass Fiber-Reinforced PTFE 247 ; 7.6.3 Bronze-Filled PTFE Composites 247 ; 7.6.4 Graphite Filled PTFE 248 ; 7.6.5 Molybdenum Disulfide (MoS2)-Filled PTFE 248 ; 7.7 Nanocomposites of PTFE 248 ; 7.8 Future Prospects of
Abstract:
High Performance Polymers and Their Nanocomposites summarizes many of the recent research accomplishments in the area of high performance polymers, such as: high performance polymers-based nanocomposites, liquid crystal polymers, polyamide 4, 6, polyamideimide, polyacrylamide, polyacrylamide-based composites for different applications, polybenzimidazole, polycyclohexylene dimethyl terephthalate, polyetheretherketone, polyetherimide, polyetherketoneketone, polyethersulfone, polyphenylene sulphide, polyphenylsulfone, polyphthalamide, Polysulfone, self-reinforced polyphenylene, thermoplastic polyimide.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 594772-1001 TA455 .P58
Searching...

On Order