Skip to:Content
|
Bottom
Cover image for Metal oxide nanocomposite thin films for optoelectronic device applications
Title:
Metal oxide nanocomposite thin films for optoelectronic device applications
Author:
Zargar, Rayees Ahmad, editor.
ISBN:
9781119865636

9781119865629

9781119865612
Physical Description:
1 online resource
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Nanotechnology -- Chapter 1 Synthesis and Characterization of Metal Oxide Nanoparticles/Nanocrystalline Thin Films for Photovoltaic Application -- 1.1 Present Status of Power Generation Capacity and Target in India -- 1.2 Importance of Solar Energy -- 1.3 Evolution in Photovoltaic Cells and their Generations -- 1.3.1 First Generation Photovoltaic Cell -- 1.3.2 Second-Generation Photovoltaic Cell -- 1.3.3 Third Generation Photovoltaic Cell -- 1.3.4 Fourth Generation Photovoltaic Cell -- 1.4 Role of Nanostructured Metal Oxides in Production, Conversion, and Storage in Harvesting Renewable Energy -- 1.5 Synthesis of Nanostructured Metal Oxides for Photovoltaic Cell Application -- 1.5.1 Chemical Vapor Deposition Method -- 1.5.2 Metal Organic Chemical Vapor Deposition Method -- 1.5.3 Plasma-Enhanced CVD (PECVD) Method -- 1.5.4 Spray Pyrolysis Method -- 1.5.5 Atomic Layer Deposition or Atomic Layer Epitaxy Method -- 1.5.6 Chemical Co-Precipitation Method -- 1.5.7 Sol-Gel Method -- 1.5.8 Solvothermal/Hydrothermal Method -- 1.5.9 Microemulsions Method -- 1.5.10 Microwave-Assisted Method -- 1.5.11 Ultrasonic/Sonochemical Method -- 1.5.12 Green Chemistry Method -- 1.5.13 Spin Coating Method -- 1.5.14 Dip Coating Method -- 1.5.15 Physical Vapor Deposition (PVD) Methods -- 1.5.16 Pulsed Laser Deposition Method -- 1.5.17 Sputtering Method -- 1.5.17.1 Radio Frequency (RF) Sputtering Method -- 1.5.17.2 DC Sputtering Method -- 1.5.18 Chemical Bath Deposition Method -- 1.5.19 Electron Beam Evaporation -- 1.5.20 Thermal Evaporation Technique -- 1.5.21 Electrodeposition Method -- 1.5.22 Anodic Oxidation Method -- 1.5.23 Screen Printing Method -- 1.6 Characterization of Metal Oxide Nanoparticles/Thin Films -- 1.7 Conclusion and Future Aspects -- References.

Chapter 2 Experimental Realization of Zinc Oxide: A Comparison Between Nano and Micro-Film -- 2.1 Introduction -- 2.2 Approaches to Nanotechnology -- 2.3 Wide Band Semiconductors -- 2.4 Zinc Oxide (ZnO) -- 2.4.1 Crystal Structure of ZnO -- 2.5 Properties of Zinc Oxide -- 2.5.1 Mechanical Properties -- 2.5.2 Electronic Properties -- 2.5.3 Luminescence Characteristics -- 2.5.4 Optical Band Gap -- 2.6 Thin Film Deposition Techniques -- 2.6.1 Thin and Thick Film -- 2.6.2 Solution-Cum Syringe Spray Method -- 2.7 Procedure of Experimental Work -- 2.8 Calculation of Thickness of Thin ZnO Films -- 2.9 Structural Analysis -- 2.9.1 XRD (X-Ray Diffraction) -- 2.9.2 SEM (Scanning Electron Microscope) -- 2.10 Optical Characterization -- 2.10.1 UV Spectroscopy -- 2.10.2 Photoluminescence (PL) Spectroscopy -- 2.11 Electrical Characterization -- 2.11.1 Resistivity by Two-Probe Method -- 2.12 Applications of Zinc Oxide -- 2.13 Conclusions and Future Work -- References -- Chapter 3 Luminescent Nanocrystalline Metal Oxides: Synthesis, Applications, and Future Challenges -- 3.1 Introduction -- 3.2 Different Types of Luminescence -- 3.2.1 Photoluminescence -- 3.2.2 Thermoluminescence -- 3.2.3 Chemiluminescence -- 3.2.4 Sonoluminescence -- 3.2.5 Bioluminescence -- 3.2.6 Triboluminescence -- 3.2.7 Cathodoluminescence -- 3.2.8 Electroluminescence -- 3.2.9 Radioluminescence -- 3.3 Luminescence Mechanism in Nanomaterials -- 3.4 Luminescent Nanomaterials Characteristic Properties -- 3.5 Synthesis and Shape Control Methods for Luminescent Metal Oxide Nanomaterials -- 3.5.1 Chemical Vapor Synthesis Method -- 3.5.2 Thermal Decomposition Method -- 3.5.3 Pulsed Electron Beam Evaporation Method -- 3.5.4 Microwave-Assisted Combustion Method -- 3.5.5 Hydrothermal/Solvothermal Method -- 3.5.6 Sol-Gel Method -- 3.5.7 Chemical Co-Precipitation Method -- 3.5.8 Sonochemical Method.

3.5.9 Continuous Flow Method -- 3.5.10 Aerosol Pyrolysis Method -- 3.5.11 Polyol-Mediated Methods -- 3.5.12 Two-Phase Method -- 3.5.13 Microemulsion Method -- 3.5.14 Green Synthesis Method -- 3.6 Characterization of Nanocrystalline Luminescent Metal Oxides -- 3.7 Applications of Nanocrystalline Luminescent Metal Oxides -- 3.8 Conclusion and Future Aspects of Nanocrystalline Luminescent Metal Oxides -- References -- Chapter 4 Status, Challenges and Bright Future of Nanocomposite Metal Oxide for Optoelectronic Device Applications -- Abbreviations -- 4.1 Introduction -- 4.2 Synthesis of Nanocomposite Metal Oxide by Physical and Chemical Routes -- 4.2.1 Synthesis of Metal Oxides Nanoparticles by Chemical Technique -- 4.2.2 Synthesis of Metal Oxides Nanoparticles by Physical Technique -- 4.2.3 Synthesis of Metal Oxides by Mechanical Technique -- 4.3 Characterization Techniques Used for Metal Oxide Optoelectronics -- 4.3.1 X-Ray Diffraction (XRD) -- 4.3.2 Scanning Electron Microscopy (SEM) -- 4.3.3 Transmission Electron Microscopy (TEM) -- 4.3.4 Rutherford Backscattering Spectrometry (RBS) -- 4.3.5 Fourier-Transform Infra-Red (FTIR) -- 4.3.6 Raman Spectroscopy -- 4.3.7 Luminescence Technique -- 4.4 Optoelectronic Devices Based on MOs Nanocomposites -- 4.4.1 Light-Emitting Device -- 4.4.2 Photodetector -- 4.4.3 Solar Cell -- 4.4.4 Charge-Transporting Layers Using Metal Oxide NPs -- 4.4.5 MO NPs as a Medium for Light Conversion -- 4.4.6 Transparent Conducting Oxides (TCO) -- 4.5 Advantages of Pure/Doped Metal Oxides Used in Optoelectronic Device Fabrication -- 4.6 Parameters Required for Optoelectronic Devices Applications -- 4.7 Conclusion and Future Perspective of Metal Oxides-Based Optoelectronic Devices -- Acknowledgement -- References -- Part II: Thin Film Technology -- Chapter 5 Semiconductor Metal Oxide Thin Films: An Overview -- 5.1 Introduction.

5.1.1 An Introduction to Semiconducting Metal Oxide -- 5.1.2 Properties of Semiconducting Metal Oxide -- 5.1.3 Semiconducting Metal Oxide Thin Films -- 5.1.4 Thin Films Deposition Method -- 5.1.4.1 Physical Vapor Deposition (PVD) Method -- 5.1.4.2 Evaporation Methodology -- 5.1.4.3 Thermal Evaporation -- 5.1.4.4 Molecular Beam Epitaxy -- 5.1.4.5 Electron Beam Evaporation -- 5.1.4.6 Advantages and Disadvantages of PVD Method -- 5.1.4.7 Sputtering Technique -- 5.1.4.8 Advantages and Disadvantages of Sputtering Technique -- 5.1.4.9 Chemical Vapor Deposition (CVD) -- 5.1.4.10 Photo-Enhanced Chemical Vapor Deposition (PHCVD) -- 5.1.4.11 Laser-Induced Chemical Vapor Deposition (LICVD) -- 5.1.4.12 Atmospheric Pressure Chemical Vapor Deposition (APCVD) -- 5.1.4.13 Plasma Enhanced Chemical Vapor Deposition (PECVD) -- 5.1.4.14 Atomic Layer Deposition (ALD) -- 5.1.4.15 Electrolytic Anodization -- 5.1.4.16 Electroplating -- 5.1.4.17 Chemical Reduction Plating -- 5.1.4.18 Electroless Plating -- 5.1.4.19 Electrophoretic Deposition -- 5.1.4.20 Immersion Plating -- 5.1.4.21 Advantages and Disadvantages of CVD Process -- 5.1.4.22 Sol-Gel Method -- 5.1.5 Application of Semiconducting Metal Oxide Thin Films -- 5.1.5.1 Photovoltaic Cells -- 5.1.5.2 Thin-Film Transistors -- 5.1.5.3 Computer Hardware -- 5.1.5.4 LED and Optical Displays -- 5.1.6 Limitations of Semiconductor Thin Films -- 5.2 Conclusion and Outlook -- Acknowledgement -- References -- Chapter 6 Thin Film Fabrication Techniques -- 6.1 Introduction -- 6.2 Thin Film -- Types and Their Application -- 6.3 Classification of Thin-Film Fabrication Techniques -- 6.4 Methodology -- 6.4.1 Thermal Evaporation -- 6.4.2 Molecular Beam Epitaxy -- 6.4.3 Electron Beam Evaporation -- 6.4.4 Sputtering Technique -- 6.4.5 Chemical Vapor Deposition (CVD) -- 6.4.6 Atomic Layer Deposition (ALD).

6.4.7 Liquid Phase Chemical Formation Technique -- 6.4.8 Electrolytic Anodization -- 6.4.9 Electroplating -- 6.5 Advantages of CVD Process -- 6.6 Comparison Between PVD and CVD -- 6.7 Conclusion -- References -- Chapter 7 Printable Photovoltaic Solar Cells -- 7.1 Introduction -- 7.2 Working Principle of Printable Solar Cells -- 7.3 Wide Band Gap Semiconductors -- 7.3.1 Cadmium Telluride Solar Cells (CIGS) -- 7.3.2 Perovskite Solar Cells -- 7.3.3 Solar Cells Based on Additive Free Materials -- 7.3.4 Charge-Carrier Selective Layers That Can Be Printed -- 7.4 Metal Oxide-Based Printable Solar Cell -- 7.5 What is Thick Film, Its Technology with Advantages -- 7.5.1 Thick Film Materials Substrates -- 7.5.2 Thick Film Inks -- 7.6 To Select Suitable Technology for Film Deposition by Considering the Economy, Flexibility, Reliability, and Performance Aspects -- 7.6.1 Experimental Procedure for Preparation of Thick Films by Screen Printing Process -- 7.6.2 Quality of Printing -- 7.6.3 The Following Factors Contribute to Incomplete Filling -- 7.7 Procedures for Firing -- 7.7.1 Thick Film Technology has Four Distinct Advantages -- 7.8 Deposition of Thin Film Layers via Solution-Based Process -- 7.8.1 Approaches for Coating -- 7.8.2 Casting -- 7.8.3 Spin Coating -- 7.8.4 Blade Coating -- Conclusion -- References -- Chapter 8 Response of Metal Oxide Thin Films Under Laser Irradiation -- 8.1 Introduction -- 8.2 Interaction of Laser with Material -- 8.3 Radiation Causes Modification -- 8.4 Application Laser Irradiated Films -- 8.5 Wavelength Range of Radiation -- 8.6 Laser Irradiation Mechanism -- 8.7 Experimental Procedure -- 8.7.1 Thin Film Technologies -- 8.7.2 What is Thick Film, Its Technology with Advantages -- 8.7.3 Experimental Detail of Screen Printing and Preparation of Zn0.80Cd0.20O Paste for Coated Film -- 8.7.4 Variation of Optical Properties.
Abstract:
The fabrication of thin film-based materials is important to the future production of safe, efficient, and affordable energy as the devices convert sunlight into electricity. Thin film devices allow excellent interface engineering for high-performance printable solar cells as their structures are highly reliable and stand-alone systems can provide the required megawatts. They have been used as power sources in solar home systems, remote buildings, water pumping, megawatt-scale power plants, satellites, communications, and space vehicles. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications covers the basics of advanced nanometal oxide-based materials, their synthesis, characterization, and applications, and all the updated information on optoelectronics. Topics discussed include the implications of metal oxide thin films, which are critical for device fabrications. It provides updated information on the economic aspect and toxicity, with great focus paid to display applications, and covers some core areas of nanotechnology, which are particularly concerned with optoelectronics and the available technologies. The book concludes with insights into the role of nanotechnology and the physics behind photovoltaics.
Local Note:
John Wiley and Sons
Added Author:
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 598580-1001 TA418.9 .T45 M48 2023
Searching...

On Order

Go to:Top of Page