Skip to:Content
|
Bottom
Cover image for Computational neuroscience : simulated demyelinating neuropathies and neuronopathies
Title:
Computational neuroscience : simulated demyelinating neuropathies and neuronopathies
Author:
Stephanova, Diana Ivanova, author.
ISBN:
9781466578364
Physical Description:
1 online resource : text file, PDF
Contents:
I. Nerve fibres -- II. Models and methods for investigation of the human motor nerve fibre -- III. Simulated demyelinating neuropathies and neuropathies -- IV. Effect of myelin sheath aqueous layers on the excitability properties of simulated hereditary and chronic demyelinating neuropathies.
Abstract:
"Preface Preface v vi Computational Neuroscience Simulated Demyelinating Neuropathies and Neuronopathies (PISD) are specifi c indicators for CIDP and its subtypes; (3) the severe focal demyelinations, each of them internodal and paranodal, paranodalinternodal (IFD and PFD, PIFD), are specifi c indicators for acquired demyelinating neuropathies such as GBS and MMN; (4) the simulated progressively greater degrees of axonal dysfunctions termed ALS1, ALS2 and ALS3 are specifi c indicators for the motor neuron disease ALS Type1, Tape2 and Type3; and (5) the obtained excitability properties in the simulated demyelinating neuropathies are quite different from those in the simulated ALS subtypes, because of the different fi bre electrogenesis. The results show that the abnormalities in the axonal excitability properties in the ALS1 subtype are near normal. The results also show that in the simulated hereditary, chronic and acquired demyelinating neuropathies, the slowing of action potential propagation, based on the myelin sheath dysfunctions, is larger than this, based on the progressively increased uniform axonal dysfunctions in the simulated ALS2 and ALS3 subtypes. Conversely, the abnormalities in the accommodative and adaptive processes are larger in the ALS2 and ALS3 subtypes than in the demyelinating neuropathies. The increased axonal superexcitability in the ALS2 and ALS3 subtypes leads to repetitive discharges (action potential generation) in the nodal and internodal axolemma beneath the myelin sheath along the fi bre length in response to the applied long-duration subthreshold polarizing current stimuli (accommodative processes) and to the applied long-duration suprathreshold depolarizing current stimuli (adaptive processes)"-- Provided by publisher.
Added Author:
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 289098-1001 ONLINE
Searching...

On Order

Go to:Top of Page