
Title:
Applications of homogenization theory to the study of mineralized tissue
Author:
Gilbert, Robert P., 1932- author.
ISBN:
9780429533242
9780429143380
9780429547942
9781584887928
Edition:
1st.
Physical Description:
1 online resource : illustrations (black and white).
Series:
Chapman & Hall/CRC Monographs and Research Notes in Mathematics
General Note:
<P><STRONG>Introductory Remarks</STRONG></P><P>Some Functional Spaces</P><P>Variational Formulation</P><P>Geometry of Two Phase Composite</P><P>Two-scale Convergence Method</P><P>The Concept of a Homogenized Equation</P><P>Two-Scale convergence with time dependence</P><P>Potential and Solenoidal Fields</P><P></P><B><P>The Homogenization Technique Applied to Soft Tissue</P></B><P>Homogenization of Soft Tissue</P><P>Galerkin approximations</P><P>Derivation of the effective equation of U0</P><P></P><B><P>Acoustics in Porous Media</P></B><P>Introduction</P><P>Diphasic Macroscopic Behavior</P><P>Well-posedness for problem (3.2.49 and 3.2.55)</P><P>The slightly compressible di-phasic behavior</P><P></P><B><P>Wet Ionic, Piezo-electric Bone</P></B><P>Introduction</P><P>Wet bone with ionic interaction</P><P>Homogenization using Formal Power Series</P><P>Wet bone without ionic interaction</P><P>Electrodynamics</P><P></P><P>Visco-elasticity and Contact Friction Between the Phases</P><P>Kelvin-Voigt Material</P><P>Rigid Particles in a Visco-elastic Medium</P><P>Equations of motion and contact conditions</P><P>Two-scale expansions and formal homogenization</P><P>Model case I: Linear contract conditions</P><P>Model case II: Quadratic contract conditions</P><P>Model case III: Power type contact condition</P><P></P><B><P>Acoustics in a Random Microstructure</P></B><P>Introduction</P><P>Stochastic Two-scale limits</P><P>Periodic Approximation</P><P></P><B><P>Non-Newtonian Interstitial Fluid</P></B><P>The Slightly Compressible Polymer. Microscale Problem</P><P>A Priori Estimates</P><P>Two-Scale System</P><P>Description of the effective stress</P><P>Effective equations</P><P></P><B><P>Multiscale FEM for the modeling of cancellous bone</P></B><P>Concept of the multiscale FEM</P><P>Microscale: Modeling of the RVE and calculation of the effective material properties</P><P>Macroscale: Simulation of the ultrasonic test</P><P>Simplified version of the RVE and comparison with the experimental results</P><P>Anisotropy of cancellous bone</P><P>Investigation of the influence of reflection on the attenuation of cancellous bone</P><P>Determination of the geometry of the RVE for cancellous bone by using the effective complex shear modulus</P><P></P><B><P>G-convergence and Homogenization of Viscoelastic Flows</P></B><P>Introduction</P><P>Main definitions. Corrector operators for G-convergence</P><P>A scalar elliptic equation in divergence form</P><P>Homogenization of two-phase visco-elastic flows with time-varying interface</P><P>Main theorem and outline of the proof</P><P>Corrector operators and oscillating test functions</P><P>Inertial terms in the momentum balance equation</P><P>Effective deviatoric stress. Proof of the main theorem</P><P>Fluid-structure interaction</P><P></P><B><P>Biot Type Models for Bone Mechanics</P></B><P>Bone Rigidity</P><P>Anisotropic Biot Systems</P><P>The Case of a non-Newtonian Interstitial Fluid</P><P>Some Time-Dependent Solutions to the Biot System</P><P></P><B><P>Creation of RVE for Bone Microstructure</P></B><P>The RVE Model</P><P>Reformulation as a Graves-like scheme</P><P>Absorbring boundary condition-perfectly matched layer</P><P>Discretized systems</P><P></P><B><P>Bone Growth and Adaptive Elasticity</P></B><P>The Model</P><P>Scalings of Unknowns</P><P>Asymptotic Solutions</P><P>Further Reading</P>
Electronic Access:
Taylor & Francis https://www.taylorfrancis.com/books/9780429143380OCLC metadata license agreement http://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 564160-1001 | RC931 .O73 | Searching... | Searching... |
