Cover image for Optimization of energy systems
Title:
Optimization of energy systems
Author:
Dincer, Ibrahim.
ISBN:
9781118894491

9781118894507

9781118894484
Publication Information:
Hoboken, N.J. : Wiley, 2017.
Physical Description:
1 online resource
General Note:
Title from resource description page (Recorded Books, viewed May 22, 2017).
Contents:
Cover -- Title Page -- Copyright -- Contents -- Acknowledgements -- Preface -- Chapter 1 Thermodynamic Fundamentals -- 1.1 Introduction -- 1.2 Thermodynamics -- 1.3 The First Law of Thermodynamics -- 1.3.1 Thermodynamic System -- 1.3.2 Process -- 1.3.3 Cycle -- 1.3.4 Heat -- 1.3.5 Work -- 1.3.6 Thermodynamic Property -- 1.3.6.1 Specific Internal Energy -- 1.3.6.2 Specific Enthalpy -- 1.3.6.3 Specific Entropy -- 1.3.7 Thermodynamic Tables -- 1.3.8 Engineering Equation Solver (EES) -- 1.4 The Second Law of Thermodynamics -- 1.5 Reversibility and Irreversibility -- 1.6 Exergy -- 1.6.1 Exergy Associated with Kinetic and Potential Energy -- 1.6.2 Physical Exergy -- 1.6.3 Chemical Exergy -- 1.6.3.1 Standard Chemical Exergy -- 1.6.3.2 Chemical Exergy of Gas Mixtures -- 1.6.3.3 Chemical Exergy of Humid Air -- 1.6.3.4 Chemical Exergy of Liquid Water and Ice -- 1.6.3.5 Chemical Exergy for Absorption Chillers -- 1.6.4 Exergy Balance Equation -- 1.6.5 Exergy Efficiency -- 1.6.6 Procedure for Energy and Exergy Analyses -- 1.7 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 2 Modeling and Optimization -- 2.1 Introduction -- 2.2 Modeling -- 2.2.1 Air compressors -- 2.2.2 Gas Turbines -- 2.2.3 Pumps -- 2.2.4 Closed Heat Exchanger -- 2.2.5 Combustion Chamber (CC) -- 2.2.6 Ejector -- 2.2.7 Flat Plate Solar Collector -- 2.2.8 Solar Photovoltaic Thermal (PV/T) System -- 2.2.9 Solar Photovoltaic Panel -- 2.3 Optimization -- 2.3.1 System Boundaries -- 2.3.2 Objective Functions and System Criteria -- 2.3.3 Decision Variables -- 2.3.4 Constraints -- 2.3.5 Optimization Methods -- 2.3.5.1 Classical Optimization -- 2.3.5.2 Numerical Optimization Methods -- 2.3.5.3 Evolutionary Algorithms -- 2.4 Multi-objective Optimization -- 2.4.1 Sample Applications of Multi-objective Optimization -- 2.4.1.1 Economics -- 2.4.1.2 Finance -- 2.4.1.3 Engineering.

2.4.2 Illustrative Example: Air Compressor Optimization -- 2.4.2.1 Thermodynamic and Economic Modeling and Analysis -- 2.4.2.2 Decision Variables -- 2.4.2.3 Constraints -- 2.4.2.4 Multi-objective Optimization -- 2.4.3 llustrative Example: Steam Turbine -- 2.4.3.1 Decision Variables -- 2.4.3.2 Constraints -- 2.4.3.3 Multi-objective Optimization -- 2.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Modeling and Optimization of Thermal Components -- 3.1 Introduction -- 3.2 Air Compressor -- 3.3 Steam Turbine -- 3.4 Pump -- 3.4.1 Modeling and Simulation of a Pump -- 3.4.2 Decision variables -- 3.4.3 Constraints -- 3.4.4 Multi-objective Optimization of a Pump -- 3.5 Combustion Chamber -- 3.5.1 Modeling and Analysis of a Combustion Chamber -- 3.5.1.1 Total Cost Rate -- 3.5.2 Decision Variables -- 3.5.3 Constraints -- 3.5.4 Multi-objective Optimization -- 3.6 Flat Plate Solar Collector -- 3.6.1 Modeling and Analysis of Collector -- 3.6.2 Decision Variables and Input Data -- 3.6.3 Constraints -- 3.6.4 Multi-objective Optimization -- 3.7 Ejector -- 3.7.1 Modeling and Analysis of an Ejector -- 3.7.2 Decision Variables and Constraints -- 3.7.3 Objective Functions and Optimization -- 3.8 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Modeling and Optimization of Heat Exchangers -- 4.1 Introduction -- 4.2 Types of Heat Exchangers -- 4.3 Modeling and Optimization of Shell and Tube Heat Exchangers -- 4.3.1 Modeling and Simulation -- 4.3.2 Optimization -- 4.3.2.1 Definition of Objective Functions -- 4.3.2.2 Decision Variables -- 4.3.3 Case Study -- 4.3.4 Model Verification -- 4.3.5 Optimization Results -- 4.3.6 Sensitivity Analysis Results -- 4.4 Modeling and Optimization of Cross Flow Plate Fin Heat Exchangers -- 4.4.1 Modeling and Simulation -- 4.4.2 Optimization -- 4.4.2.1 Decision Variables.

4.4.3 Case Study -- 4.4.4 Model Verification -- 4.4.5 Optimization Results -- 4.4.6 Sensitivity Analysis Results -- 4.5 Modeling and Optimization of Heat Recovery Steam Generators -- 4.5.1 Modeling and Simulation -- 4.5.2 Optimization -- 4.5.2.1 Decision Variables -- 4.5.3 Case Study -- 4.5.4 Modeling Verification -- 4.5.5 Optimization Results -- 4.5.6 Sensitivity Analysis Results -- 4.6 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 5 Modeling and Optimization of Refrigeration Systems -- 5.1 Introduction -- 5.2 Vapor Compression Refrigeration Cycle -- 5.2.1 Thermodynamic Analysis -- 5.2.2 Exergy Analysis -- 5.2.3 Optimization -- 5.2.3.1 Decision Variables -- 5.2.3.2 Optimization Results -- 5.3 Cascade Refrigeration Systems -- 5.4 Absorption Chiller -- 5.4.1 Thermodynamic Analysis -- 5.4.2 Exergy Analysis -- 5.4.3 Exergoeconomic Analysis -- 5.4.4 Results and Discussion -- 5.4.4.1 Optimization -- 5.4.4.2 Optimization Results -- 5.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 6 Modeling and Optimization of Heat Pump Systems -- 6.1 Introduction -- 6.2 Air/Water Heat Pump System -- 6.3 System Exergy Analysis -- 6.4 Energy and Exergy Results -- 6.5 Optimization -- 6.6 Concluding Remarks -- Reference -- Study Questions/Problems -- Chapter 7 Modeling and Optimization of Fuel Cell Systems -- 7.1 Introduction -- 7.2 Thermodynamics of Fuel Cells -- 7.2.1 Gibbs Function -- 7.2.2 Reversible Cell Potential -- 7.3 PEM Fuel Cell Modeling -- 7.3.1 Exergy and Exergoeconomic Analyses -- 7.3.2 Multi-objective Optimization of a PEM Fuel Cell System -- 7.4 SOFC Modeling -- 7.4.1 Mathematical Model -- 7.4.2 Cost Analysis -- 7.4.3 Optimization -- 7.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 8 Modeling and Optimization of Renewable Energy Based Systems -- 8.1 Introduction.

8.2 Ocean Thermal Energy Conversion (OTEC) -- 8.2.1 Thermodynamic Modeling of OTEC -- 8.2.1.1 Flat Plate Solar Collector -- 8.2.1.2 Organic Rankine Cycle (ORC) -- 8.2.1.3 PEM Electrolyzer -- 8.2.2 Thermochemical Modeling of a PEM Electrolyzer -- 8.2.3 Exergy Analysis -- 8.2.4 Efficiencies -- 8.2.4.1 Exergy Efficiency -- 8.2.5 Exergoeconomic Analysis -- 8.2.5.1 Flat Plate Solar Collector in OTEC Cycle -- 8.2.5.2 OTEC Cycle -- 8.2.6 Results and Discussion -- 8.2.6.1 Modeling Validation and Simulation Code Results -- 8.2.6.2 Exergy Analysis Results -- 8.2.7 Multi-objective Optimization -- 8.2.7.1 Objectives -- 8.2.7.2 Decision Variables -- 8.2.8 Optimization Results -- 8.3 Solar Based Energy System -- 8.3.1 Thermodynamic Analysis -- 8.3.2 Exergoeconomic Analysis -- 8.3.3 Results and Discussion -- 8.3.3.1 Exergoeconomic Results -- 8.3.4 Sensitivity Analysis -- 8.3.5 Optimization -- 8.3.6 Optimization Results -- 8.4 Hybrid Wind-Photovoltaic-Battery System -- 8.4.1 Modeling -- 8.4.1.1 Photovoltaic (PV) Panel -- 8.4.1.2 Wind Turbine (WT) -- 8.4.1.3 Battery -- 8.4.2 Objective Function, Design Parameters, and Constraints -- 8.4.3 Real Parameter Genetic Algorithm -- 8.4.4 Case Study -- 8.4.5 Results and Discussion -- 8.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 9 Modeling and Optimization of Power Plants -- 9.1 Introduction -- 9.2 Steam Power Plants -- 9.2.1 Modeling and Analysis -- 9.2.2 Objective Functions, Design Parameters, and Constraints -- 9.3 Gas Turbine Power Plants -- 9.3.1 Thermodynamic Modeling -- 9.3.1.1 Air Compressor -- 9.3.1.2 Air Preheater (AP) -- 9.3.1.3 Combustion Chamber (CC) -- 9.3.1.4 Gas Turbine -- 9.3.2 Exergy and Exergoeconomic Analyses -- 9.3.3 Environmental Impact Assessment -- 9.3.4 Optimization -- 9.3.4.1 Definition of Objective Functions -- 9.3.4.2 Decision Variables -- 9.3.4.3 Model Validation.

9.3.5 Results and Discussion -- 9.3.6 Sensitivity Analysis -- 9.3.7 Summary -- 9.4 Combined Cycle Power Plants -- 9.4.1 Thermodynamic Modeling -- 9.4.1.1 Duct Burner -- 9.4.1.2 Heat Recovery Steam Generator (HRSG) -- 9.4.1.3 Steam Turbine (ST) -- 9.4.1.4 Condenser -- 9.4.1.5 Pump -- 9.4.2 Exergy Analysis -- 9.4.3 Optimization -- 9.4.3.1 Definition of Objectives -- 9.4.3.2 Decision Variables -- 9.4.3.3 Constraints -- 9.4.4 Results and Discussion -- 9.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 10 Modeling and Optimization of Cogeneration and Trigeneration Systems -- 10.1 Introduction -- 10.2 Gas Turbine Based CHP System -- 10.2.1 Thermodynamic Modeling and Analyses -- 10.2.1.1 Air Preheater -- 10.2.1.2 Heat Recovery Steam Generator (HRSG) -- 10.2.2 Optimization -- 10.2.2.1 Single Objective Optimization -- 10.2.2.2 Multi-objective Optimization -- 10.2.2.3 Optimization Results -- 10.3 Internal Combustion Engine (ICE) Cogeneration Systems -- 10.3.1 Selection of Working Fluids -- 10.3.2 Thermodynamic Modeling and Analysis -- 10.3.2.1 Internal Combustion Engine -- 10.3.2.2 Organic Rankine Cycle -- 10.3.2.3 Ejector Refrigeration Cycle (ERC) -- 10.3.3 Exergy Analysis -- 10.3.4 Optimization -- 10.3.4.1 Decision Variables -- 10.3.4.2 Multi-objective optimization -- 10.4 Micro Gas Turbine Trigeneration System -- 10.4.1 Thermodynamic Modeling -- 10.4.1.1 Topping Cycle (Brayton Cycle) -- 10.4.1.2 Bottoming Cycle -- 10.4.1.3 Absorption Chiller -- 10.4.1.4 Domestic Water Heater -- 10.4.2 Exergy Analysis -- 10.4.3 Optimization -- 10.4.3.1 Definition of Objectives -- 10.4.3.2 Decision Variables -- 10.4.3.3 Evolutionary Algorithm: Genetic Algorithm -- 10.4.4 Optimization Results -- 10.4.5 Sensitivity Analysis -- 10.5 Biomass Based Trigeneration System -- 10.5.1 Thermodynamic Modeling -- 10.5.1.1 Gasifier.
Abstract:
An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: -Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications.-Examples, practical applications and case studies to put theory into practice.-Study problems at the end of each chapter that foster critical thinking and skill development.-Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 593688-1001 TJ163.9 D563 2017
Searching...

On Order