Cover image for 3D industrial printing with polymers
Title:
3D industrial printing with polymers
Author:
Fink, Johannes Karl, author.
ISBN:
9781119555230

9781119555308

9781119555315

9781119555261
Physical Description:
1 online resource
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Methods of 3D Printing -- 1.1 History -- 1.1.1 Recently Developed Materials for 3D Printing -- 1.1.2 Shrinkage Compensation -- 1.2 Basic Principles -- 1.2.1 4D Printing -- 1.3 Uses and Applications -- 1.3.1 Heat Exchangers -- 1.3.2 3D Plastic Model -- 1.3.3 Gradient Refractive Index Lenses -- 1.3.4 Photoformable Composition -- 1.3.5 Comb Polymers -- 1.3.6 Post-Processing Infiltration -- 1.3.7 Sensors and Biosensors -- 1.4 Magnetic Separation -- 1.5 Rapid Prototyping -- 1.5.1 Variants of Rapid Prototyping -- 1.5.2 3D Microfluidic Channel Systems -- 1.5.3 Aluminum and Magnesium Cores -- 1.5.4 Cellular Composites -- 1.5.5 Powder Compositions -- 1.5.6 Organopolysiloxane Compositions -- 1.5.7 Th ermoplastic Powder Material -- 1.5.8 Plasticizer-Assisted Sintering -- 1.5.9 Radiation-Curable Resin Composition -- 1.6 Solution Mask Liquid Lithography -- 1.7 Vat Polymerization -- 1.7.1 Poly(dimethyl siloxane)-Based Photopolymer -- 1.8 Hot Lithography -- 1.9 Ambient Reactive Extrusion -- 1.10 Micromanufacturing Engineering -- 1.11 Analytical Uses -- 1.11.1 Gas Sensors -- 1.12 Chemical Engineering -- 1.12.1 Gas Separation -- 1.12.2 Hierarchical Monoliths for Carbon Monoxide Methanation -- 1.13 Rotating Spinnerets -- 1.14 Objects with Surface Microstructures -- 1.15 Lightweight Cellular Composites -- 1.16 Textiles -- 1.16.1 3D Printed Polymers Combined with Textiles -- 1.16.2 Mechanical and Electrical Contacting -- 1.16.3 Soft Electronic Textiles -- 1.16.4 4D Textiles -- References -- 2 Polymers -- 2.1 Polymer Matrix Composites -- 2.1.1 Biocomposite Filaments -- 2.1.2 Nanocomposites -- 2.1.3 Nanowires -- 2.1.4 Fiber Reinforced Polymers -- 2.1.5 Carbon Fiber Polymer Composites -- 2.1.6 FDM Printing -- 2.1.7 Powder Bed and Inkjet Head 3D Printing -- 2.1.8 Stereolithography.

2.1.9 Selective Laser Sintering -- 2.2 Sequential Interpenetrating Polymer Network -- 2.3 3D Printable Diamond Polymer Composite -- 2.4 Adhesives for 3D Printing -- 2.5 Voronoi-Based Composite Structures -- 2.6 Graphene Oxide Reinforced Complex Architectures -- 2.7 Multiwalled Carbon Nanotube Composites -- 2.8 Multifunctional Polymer Nanocomposites -- 2.9 Additive Manufacturing -- 2.9.1 Thermosetting Polymers -- 2.9.2 UV Curable Materials -- 2.9.3 (Meth)acrylate Monomers -- 2.9.4 Thiol-ene and Thiol-yne Systems -- 2.9.5 Epoxides -- 2.10 Visible Light-Curable and Visible Wavelength-Transparent Resin -- 2.11 Poly(ether ether ketone) -- 2.12 Lasers -- 2.13 Ultra-High MolecularWeight PE -- 2.14 Production of PP Polymer Powders -- 2.15 Acrylate-Based Compositions -- 2.15.1 Dimensionally Stable Acrylic Alloys -- 2.15.2 Oligoester Acrylates -- 2.16 Standards -- 2.16.1 Biomedical Applications -- 2.16.2 Color -- 2.17 Particle-Free Emulsions -- 2.18 Shape Memory Polymers -- 2.18.1 Synthesis with Stereolithography -- 2.18.2 Flexible Electronics -- 2.18.3 Magnetically Responsive Shape Memory Polymer -- 2.18.4 Sequential Self-Folding Structures -- 2.18.5 Multi-shape Active Composites -- 2.18.6 Radiation Sensitizers -- 2.18.7 Shape Memory Alloy Actuating Wire -- 2.18.8 Metal Electrode Fabrication -- 2.18.9 4D Printing -- 2.19 Water-Soluble Polymer -- 2.20 Water-Washable Resin Formulations -- 2.21 Extremely Viscous Materials -- 2.21.1 Tunable Ionic Control of Polymeric Films -- 2.22 Photopolymer Compositions -- 2.22.1 Mechanical Properties of UV Curable Materials -- 2.22.2 High-Performance Photopolymer with Low Volume Shrinkage -- 2.22.3 Dual InitiationWavelengths for 3D Printing -- 2.23 Crosslinked Polymers -- 2.24 Recycled Plastics -- 2.25 3D Printed Fiber Reinforced Portland Cement Paste -- 2.26 Polymer-Derived Ceramics.

2.26.1 Photocurable Ceramic/Polymer Composites -- 2.26.2 Ceramic Matrix Composite Structures -- 2.26.3 Selective Laser Melting -- 2.26.4 Stereolithography Resin for Rapid Prototyping of Ceramics and Metals -- References -- 3 Airplanes and Cars -- 3.1 Airplanes -- 3.1.1 Material Testing Standards -- 3.1.2 Lightweight Aircraft Components -- 3.1.3 Aircraft Spare Parts -- 3.1.4 Polymer Laser Sintering -- 3.1.5 Composites Part Production -- 3.1.6 Deployable Wing Designs -- 3.1.7 Additive Manufacturing for Aerospace -- 3.1.8 Fiber Reinforced Polymeric Components -- 3.1.9 Manufacturing of Aircraft Parts -- 3.1.10 Multirotor Vehicles -- 3.1.11 Flame Retardant Aircraft Carpet -- 3.1.12 Aircraft Cabins -- 3.1.13 Additive Manufacturing of Solid Rocket Propellant Grains -- 3.1.14 High Temperature Heating System -- 3.1.15 Aerospace Propulsion Components -- 3.1.16 Antenna RF Boxes -- 3.1.17 Cyanate Ester Clay Nanocomposites -- 3.1.18 Bionic Lightweight Design -- 3.2 Cars -- 3.2.1 Laser Sintering -- 3.2.2 Automotive Repair Systems -- 3.2.3 Improving Aerodynamic Shapes -- 3.2.4 Common Automotive Applications -- 3.2.5 Thermomechanical Pulp Fibers -- 3.2.6 Polyamic Acid Salts -- 3.2.7 Recycled Tempered Glass from the Automotive Industry -- References -- 4 Electric and Magnetic Uses -- 4.1 Electric Uses -- 4.1.1 Conductive Microstructures -- 4.1.2 Modular Supercapacitors -- 4.1.3 Active Electronic Materials -- 4.1.4 Piezoelectric Materials -- 4.1.5 Holographic Metasurface Antenna -- 4.1.6 Waveguide -- 4.1.7 Fuel Cell -- 4.1.8 Batteries -- 4.2 Magnetic Uses -- 4.2.1 Polymer-Based Permanent Magnets -- 4.2.2 Bonded Magnets -- 4.2.3 Strontium Ferrite -- 4.2.4 Soft -Magnetic Composite -- 4.2.5 Discontinuous Fiber Composites by 3D Magnetic Printing -- References -- 5 Medical Applications -- 5.1 Basic Procedures -- 5.1.1 Image Acquisition -- 5.1.2 3D Printing.

5.1.3 Microvalve-Based Bioprinting -- 5.2 3D Printed Organ Models for Surgical Applications -- 5.2.1 Organ Bioprinting -- 5.2.2 Materials -- 5.2.3 Liver -- 5.2.4 Heart -- 5.2.5 Cartilage -- 5.2.6 Bionic Ears -- 5.2.7 Skin -- 5.2.8 Scaffolds -- 5.2.9 Personalized Implants -- 5.2.10 Neural Tissue Models -- 5.3 Bioinks -- 5.3.1 Cytocompatible Bioink -- 5.3.2 Hydrogel Bioinks -- 5.3.3 Dentin-Derived Hydrogel Bioink -- 5.3.4 Decellularized Extracellular Matrix Materials -- 5.3.5 Silk-Based Bioink -- 5.3.6 Nanoengineered Ionic-Covalent Entanglement Bioinks -- 5.3.7 Living Skin Constructs -- 5.3.8 Cell-Laden Scaff olds -- 5.3.9 Patient-Specific Bioinks -- 5.4 Presurgical Simulation -- 5.5 Models with Integrated Soft Tactile Sensors -- 5.6 Dental Applications -- 5.6.1 Prosthetics -- 5.7 Fluidic Devices -- 5.8 3D Bioprinting of Tissues and Organs -- 5.8.1 3D Bioprinting Techniques -- 5.8.2 Pigmented Human Skin Constructs -- 5.8.3 Strategies for Tissue Engineering -- 5.8.4 Bone Tissue -- 5.8.5 Neuroregenerative Treatment -- 5.8.6 3D Tissues/Organs Combined with Microfluidics -- 5.8.7 3D Microfibrous Constructs -- 5.8.8 Biosynthetic Cellulose Implants -- 5.8.9 Polysaccharides -- 5.8.10 Corneal Transplants -- 5.8.11 Hydrogels from Collagen -- 5.8.12 Dissolved Cellulose -- 5.8.13 Hydrogels from Hyaluronic Acid and Methyl cellulose -- 5.8.14 Stem Cells -- 5.8.15 Autografts -- 5.8.16 Drug-Eluting Coronary Stents -- 5.9 Biomedical Devices -- 5.10 Soft Somatosensitive Actuators -- References -- 6 Pharmaceutical Uses -- 6.1 Drug Release -- 6.1.1 Pharmaceutical 3D Printing -- 6.1.2 Pharmaceutically Acceptable Amorphous Polymers -- 6.1.3 Paracetamol Oral Tablets -- 6.1.4 Patient-Specific Liquid Capsules -- 6.1.5 Th ermolabile Drugs -- 6.1.6 Composite Tablets -- 6.1.7 Transdermal Drug Delivery -- 6.1.8 Chip Platforms for Microarray 3D Bioprinting -- References -- Index.

Acronyms -- Chemicals -- General Index -- EULA.
Abstract:
3D industrial printing has become mainstream in manufacturing. This unique book is the first to focus on polymers as the printing material. The scientific literature with respect to 3D printing is collated in this monograph. The book opens with a chapter on foundational issues such and presents a broad overview of 3D printing procedures and the materials used therein. In particular, the methods of 3d printing are discussed and the polymers and composites used for 3d printing are detailed. The book details the main fields of applications areas which include electric and magnetic uses, medical applications, and pharmaceutical applications. Electric and magnetic uses include electronic materials, actuators, piezoelectric materials, antennas, batteries and fuel cells. Medical applications are organ manufacturing, bone repair materials, drug-eluting coronary stents, and dental applications. The pharmaceutical applications are composite tablets, transdermal drug delivery, and patient-specific liquid capsules. A special chapter deals with the growing aircraft and automotive uses for 3D printing, such as with manufacturing of aircraft parts and aircraft cabins. In the field of cars, 3D printing is gaining importance for automotive parts (brake components, drives), for the fabrication of automotive repair systems, and even 3D printed vehicles.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 594913-1001 TS171.95
Searching...

On Order