Cover image for Flow batteries : from fundamentals to applications
Title:
Flow batteries : from fundamentals to applications
Author:
Roth, Christina, editor.
ISBN:
9783527832774

9783527832767
Physical Description:
1 online resource (1281 p.)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- Part I Fundamentals -- Chapter 1 The Need for Stationary Energy Storage -- 1.1 Power Systems -- 1.1.1 The Role of Electricity in Energy Supply -- 1.1.2 The Development of DC and AC Power Systems -- 1.1.3 The Early Use of Energy Storage on Power Systems -- 1.1.4 Centralised and Distributed Generation -- 1.1.5 Power System Infrastructure -- 1.1.6 Other Types of Electricity Generation and System Control -- 1.2 The Need for Electricity Storage -- 1.2.1 Operation of a Modern Power Network - The Requirement for Operational Stability -- 1.2.2 Requirements for Storage and the Use of Alternative Technologies, such as Demand-Side Response, Interconnectors, and Flexible Generation -- 1.2.3 Optimisation of Power Networks for Technical Performance, Economic Efficiency, and Sustainability - The Energy Trilemma -- 1.3 Changes in Electricity Network Operation: Interconnected Systems, Microgrids, and Standalone Systems -- 1.3.1 The Growth in Renewable Energy Generation -- 1.3.2 The Overlap Between Stationary Storage and Transportable and Mobile Applications -- 1.4 The Parameters for Storage: Short Term, Small Scale to Long Term, Long Duration, and Large-Scale Storage -- 1.4.1 Stationary Storage Applications -- 1.5 The Need for Longer-Duration Energy Storage -- 1.5.1 Market Estimates -- 1.6 Energy Storage Types -- 1.6.1 Pumped-Hydro Energy Storage -- 1.6.2 Alternatives to Pumped-Hydro Storage -- 1.6.3 Compressed Air Energy Storage -- 1.6.4 The Hydrogen Cycle -- 1.7 Battery Energy Storage Technologies -- 1.7.1 Flow Batteries -- 1.7.2 Flow Battery Ancillary Systems -- 1.7.2.1 Advantages and Benefits -- 1.8 The Deployment of Flow Battery and Energy Storage -- 1.9 A Future Outlook -- References -- Chapter 2 History of Flow Batteries -- 2.1 Early Developments (1884-1963).

6.3.1.2 Non-perfluorinated Membranes -- 6.3.2 Anion-Exchange Membranes (AEMs) -- 6.3.3 Amphoteric Ion-Exchange Membranes (AIEMs) -- 6.3.4 Hybrid Membranes (HMs) -- 6.3.4.1 Hybrid Inorganic-Organic IEMs -- 6.3.4.2 Organic Polymer Blends as IEMs -- 6.3.5 Porous Membranes -- 6.4 Conclusions -- References -- Chapter 7 Standards for Flow Batteries -- 7.1 Introduction -- 7.2 A Definition of Flow Batteries -- 7.3 International Standards for Flow Batteries -- 7.3.1 Standards of the International Electrotechnical Commission (IEC) -- 7.3.2 Standards of the Institute of Electrical and Electronics Engineers -- 7.4 Other National and International Standards, as well as Other Documents -- 7.5 Chinese National Standards -- 7.6 Conclusions -- References -- Chapter 8 Safety Considerations of the Vanadium Flow Battery -- 8.1 Regulatory Framework -- 8.2 Thermal Hazards -- 8.3 Chemical Hazards -- 8.4 Electrical Hazards -- 8.5 Other Considerations -- 8.6 Summary & -- Outlook -- References -- Chapter 9 A Student Workshop in Sustainable Energy Technology: The Principles and Practice of a Rechargeable Flow Battery -- 9.1 Introduction -- 9.2 Laboratory Experiment -- 9.2.1 Chemicals -- 9.2.2 Materials for Construction -- 9.3 Results and Discussion -- 9.3.1 Preparation of the Flow Battery -- 9.3.2 Electrochemical Reactions in a Soluble Lead-Acid Flow Battery -- 9.3.3 Effect of Current Density on Cell Voltage -- 9.4 Assessment of Hazards -- 9.5 Teaching Assessment and Learning Outcomes -- 9.6 Conclusions -- Acknowledgments -- Appendix: Supplementary Information for Students -- References -- Part II Characterization of Flow Batteries and Materials -- Chapter 10 Characterization Methods in Flow Batteries: A General Overview -- 10.1 General Overview -- 10.1.1 Physicochemical Methods in General -- 10.1.2 Characterization Techniques for Redox-Flow Batteries.

10.1.2.1 Physicochemical Characterization -- 10.1.2.2 Electrochemical Characterization -- 10.1.2.3 General Observations -- 10.1.3 Further Outline of Part II -- Acknowledgments -- References -- Chapter 11 Electrochemical Methods -- 11.1 Fundamental Definitions -- 11.2 Cyclic Voltammetry -- 11.2.1 Measuring Cyclic Voltammetry -- 11.2.2 Interpreting CV and LSV at Planar Electrodes - The Randles-Ševčík Relations -- 11.2.3 Strategies for Simulating Cyclic Voltammetry -- 11.2.4 The Diffusion Domain Approximation Approach for Felt Electrodes -- 11.2.5 The Real-Space Simulation Approach -- 11.2.6 Remarks on Cyclic Voltammetry -- 11.3 Electrochemical Impedance Spectroscopy -- 11.3.1 Principles and Advantages of Electrochemical Impedance Spectroscopy -- 11.3.2 Interpreting Electrochemical Impedance Spectroscopy -- 11.3.3 Impedance of Macrohomogeneous Porous Electrodes - The Paasch Model -- 11.3.4 The Normalization Method -- 11.3.5 The Distribution of Relaxation Times (DRT) Analysis -- 11.3.6 Characteristics of a "Good Impedance" - The Kramers-Kronig Relations -- 11.3.7 Advanced Electroanalytical Techniques -- 11.3.7.1 Hydrodynamic Voltammetry - The Rotating Ring-Disc Electrode (RRDE) -- 11.3.7.2 Alternating Current Cyclic Voltammetry (ACCV) -- References -- Chapter 12 Radiography and Tomography -- 12.1 Working Principle -- 12.1.1 Morphology of Electrode Materials -- 12.1.2 Visualizing the Flow and Electrolyte Distribution in the Porous Electrode -- 12.1.2.1 Injection of Electrolyte Into the Carbon Electrode (No Potential Control) -- 12.1.2.2 Electrolyte Flow in the Carbon Electrode (Cell Potential Applied) -- 12.2 Outlook -- References -- Chapter 13 Characterization of Carbon Materials -- 13.1 Introduction -- 13.2 Structure of Carbon Materials -- 13.2.1 Raman Spectroscopy -- 13.3 X-ray Powder Diffraction (XRD) -- 13.4 Surface Chemistry of Carbon Materials.

13.5 Functionalization of Carbons -- 13.5.1 Thermal Methods -- 13.5.1.1 TPD -- 13.5.1.2 TPR/TPO -- 13.5.1.3 TG/TGA -- 13.6 X-ray Photoelectron Spectroscopy (XPS) -- 13.7 Infrared Spectroscopy -- 13.8 Imaging Techniques -- 13.9 Surface Area Determination and Porosity -- 13.10 Conclusion and Perspectives -- References -- Chapter 14 Characterization of Membranes for Flow Batteries -- 14.1 Introduction -- 14.2 Ex situ Characterization Methods for Membranes -- 14.2.1 Ion-Exchange Capacity of Ionomer Membranes -- 14.2.2 Ion Conductivity of Ionogenic Groups in Membranes -- 14.2.3 Ion Permeability of the Ion-Exchange Membranes -- 14.2.4 Membrane Weight Loss -- 14.2.5 Molecular Weight (Degradation) of Ionomers and Ionomer Membranes -- 14.2.6 Determination of the Thermal Stability of the Membranes -- 14.2.7 Spectroscopical Membrane Characterization -- 14.2.8 Determination of Mechanical Membrane Properties -- 14.2.9 Microscopical Membrane Characterization -- 14.2.10 Water Transfer Behavior -- 14.3 In situ Characterization Methods for Membranes -- 14.3.1 Charge/Discharge Cycles -- 14.3.1.1 Current, Voltage, and Energy Efficiency -- 14.3.1.2 Discharge Capacity and Capacity Retention -- 14.3.2 Open-Circuit Voltage -- 14.3.3 Electrochemical Impedance Spectroscopy (EIS) -- 14.3.4 In situ Membrane Permeability Estimation -- 14.4 Summary -- References -- Part III Modeling and Simulation -- Chapter 15 Quantum Mechanical Modeling of Flow Battery Materials -- 15.1 Introduction -- 15.2 Fundamental Concepts of Molecular Quantum Mechanics -- 15.3 Density Functional Theory -- 15.4 Computational Electrochemistry at the Atomistic Scale -- 15.5 Applications to FB Materials -- References -- Chapter 16 Mesoscale Modeling and Simulation for Flow Batteries -- 16.1 Mesoscale Modeling Introduction -- 16.2 Mesoscale Modeling of Electrochemical Kinetics.
Abstract:
From basics to commercial applications, Flow Batteries covers the main aspects and recent developments of (Redox) Flow Batteries, from the electrochemical fundamentals and the materials used to their characterization and technical application. Edited by a team of leading experts, including the "founding mother of vanadium flow battery technology" Maria Skyllas-Kazacos, the full scope of this revolutionary technology is detailed, including chemistries other than vanadium and organic flow batteries. Other key topics covered in Flow Batteries include: Flow battery computational modeling and simulation, including quantum mechanical considerations, cell, stack, and system modeling, techno-economics, and grid behavior; A comparison of the standard vanadium flow battery variant with new and emerging flow batteries using different chemistries and how they will change the field; Commercially available flow batteries from different manufacturers, their technology, and application ranges; and The pivotal role of flow batteries in overcoming the global energy crisis.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 598057-1001 TK2945 .F56 R68 2023 EB
Searching...

On Order