
Title:
Electroceramics for high performance supercapacitors
Author:
Inamuddin, 1980- editor.
ISBN:
9781394167166
9781394167159
Physical Description:
1 online resource (336 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Lead-Free Energy Storage Ceramics -- 1.1 Introduction -- 1.2 Dielectric Capacitor and Energy Storage -- 1.3 Energy Storage of Dielectric Ceramics Free of Lead -- 1.4 Conclusion and Outlooks -- Acknowledgments -- References -- Chapter 2 Lead-Based Ceramics for High-Performance Supercapacitors -- 2.1 Introduction -- 2.2 General Idea of Ceramics for Supercapacitors -- 2.2.1 Metallic Oxide Ceramics for Supercapacitors -- 2.2.2 Binary Metal Oxides -- 2.2.2.1 Ceramics of Spinal Oxide Material -- 2.2.2.2 Barium Titanate Ceramics -- 2.2.3 Multimetal Oxidized Ceramics -- 2.2.4 Metal Hydroxide-Type Ceramics -- 2.3 Principle Involved in Electroceramics -- 2.3.1 Electrostatic Capacitor -- 2.4 Lead-Based Ceramics -- 2.4.1 Lead-Based Ferroelectrics -- 2.4.2 Lead-Based Relaxor Ferroelectrics -- 2.4.3 Lead-Based Anti-Ferroelectrics -- 2.5 Characteristics of Lead-Based Ceramics -- 2.5.1 Characteristics of Lead Zirconate Titanate -- 2.5.2 Characteristics of Lead Magnesium Niobate -- 2.5.3 Characteristics of Lead Zinc Niobate -- 2.6 Conclusion and Perspectives -- 2.6.1 Up-to-Date Sintering and Molding Process -- 2.6.2 Microscopical and Flexible Ceramics Electrode Materials -- 2.6.3 Improvement of Efficiency of the Ceramic Electrode Materials -- References -- Chapter 3 Ceramic Films for High-Performance Supercapacitors -- 3.1 Introduction -- 3.2 Energy Storage Principles -- 3.3 Factors Optimizing Energy Density -- 3.3.1 The Intrinsic Band Gap (Eg) -- 3.3.2 Electrical Microstructure -- 3.3.3 Density and Grain Size -- 3.4 Ceramics for Supercapacitors -- 3.4.1 Metal Oxide Ceramics -- 3.4.2 Multielemental Oxides -- 3.5 Conclusions and Outlook -- References -- Chapter 4 Ceramic Multilayers and Films for High-Performance Supercapacitors -- 4.1 Introduction.
4.2 Fundamentals of Energy Storage in Electroceramics -- 4.2.1 Electrostatic Capacitors -- 4.2.2 Important Factors Designed for Assessing Energy Storage Characteristics -- 4.3 Important Factors for Maximizing Energy Density -- 4.3.1 Intrinsic Band Gap -- 4.3.2 Electrical Microstructure -- 4.4 Different Types of Electroceramics Capacitors for Energy Storage -- 4.4.1 Pb-Doped Ceramics -- 4.4.1.1 Pb-Doped RFEs -- 4.4.1.2 Lead-Doped Antiferroelectrics -- 4.4.2 Pb-Free Ceramics -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 K0.5Na0.5NbO3-Doped Ceramics -- 4.4.2.3 Na0.5Bi0.5TiO3-Doped Ceramics -- 4.4.2.4 AgNbO3-Based Ceramics -- 4.5 Application of Electroceramics Supercapacitor -- 4.6 Conclusion -- References -- Chapter 5 Superconductors for Energy Storage -- 5.1 Introduction -- 5.1.1 Background -- 5.1.2 Superconducting Properties -- 5.1.3 Synthetic Methodology -- 5.2 Low-Temperature Superconductors -- 5.2.1 Nb-Ti-Based LTS -- 5.2.2 Nb3Sn-Based LTS -- 5.3 High-Temperature Superconductors -- 5.3.1 Cuprate-Based HTS -- 5.3.2 Iron-Based Pnictides (Pn) and Chalcogenides (Ch) as HTS -- 5.3.3 MgB2-Based HTS -- 5.3.4 Hydrides-Based HTS -- 5.4 Superconductors in Energy Applications -- 5.4.1 Superconducting Magnetic Energy Storage -- 5.4.1.1 Use of SMES in the Power Grid: Flexible AC Transmission System (FACTS) -- 5.4.1.2 Use of SMES as Fault Current Limiters -- 5.4.2 Use of Superconductors in Accelerator System -- 5.4.3 Use of Superconductors in Fusion Technologies -- 5.4.4 Challenges Faced During Superconducting Energy Storage -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6 Key Factors for Optimizing Energy Density in High-Performance Supercapacitors -- 6.1 Supercapacitor -- 6.2 Electric Double-Layer Capacitor -- 6.3 Pseudo-Capacitor -- 6.4 Hybrid Supercapacitor -- 6.4.1 Electrochemical Performance -- 6.4.2 Capacitance -- 6.4.3 Specific Capacitance.
6.4.4 Energy Density -- 6.4.5 Power Density -- 6.4.6 Cyclic Stability -- 6.5 The Energy Density of Supercapacitor -- 6.5.1 Optimization of High Energy Density -- 6.5.1.1 Pore Size -- 6.5.1.2 Surface Area -- 6.5.1.3 Grain Size -- 6.5.1.4 Functional Groups -- 6.5.1.5 Band Gap -- 6.5.2 Effect of Voltage -- 6.5.3 Asymmetric Supercapacitors -- 6.5.4 Negative Electrode Materials -- 6.5.5 Positive Electrode Materials -- 6.5.6 Battery-Supercapacitor Hybrid (Bsh) Device -- 6.5.6.1 Lithium-Ion BSH -- 6.5.6.2 Na-Ion BSH -- 6.5.6.3 Acidic BSH -- 6.5.6.4 Alkaline BSH -- 6.6 Future Outlook -- 6.7 Conclusion -- References -- Chapter 7 Optimization of Anti-Ferroelectrics -- 7.1 Introduction -- 7.2 Energy Storage Properties -- 7.3 Antiferroelectric for Energy Storage -- 7.3.1 Lead-Based Antiferroelectric -- 7.3.2 Lead-Free Antiferroelectric -- 7.3.3 Challenges -- 7.4 Explosive Energy Conversion -- 7.5 Energy Storage and High-Power Capacitors -- 7.6 Thermal-Electric Energy Interconversion -- 7.7 Optimization -- 7.7.1 Phase Structure Engineering -- 7.7.1.1 Planning Phase in a Structural Engineering Project -- 7.7.1.2 Design Phase -- 7.7.1.3 Construction Phase -- 7.7.2 Grain Size Engineering -- 7.7.3 Domain Engineering -- 7.7.3.1 Phase -- 7.7.3.2 Domain Analysis -- 7.7.3.3 Domain Design -- 7.7.4 Doping -- 7.8 Conclusion -- References -- Chapter 8 Super Capacitive Performance Assessment of Mixed Ferromagnetic Iron and Cobalt Oxides and Their Polymer Composites -- 8.1 Introduction -- 8.1.1 Electrolyte -- 8.1.2 Separator -- 8.1.3 Current Collector -- 8.1.4 Supercapacitor Electrode Materials -- 8.2 Ferromagnetic Electrode Materials -- 8.3 Mixed Ferromagnetic Iron and Cobalt Oxides -- 8.4 Conclusion -- References -- Chapter 9 Transition Metal Oxides with Broaden Potential Window for High-Performance Supercapacitors -- 9.1 Introduction of Transition Metal Oxides (TMOs).
9.2 Redox-Based Materials -- 9.3 Conducting Polymers -- 9.4 Electroactive Metal Oxides or Transition Metal Oxides (TMOs) as Electrodes for SCs -- 9.4.1 MnO2 as Electrode Material for SCs -- 9.4.2 Pseudo-Capacitive Behavior of á-MnO2 by Cation Insertion -- 9.4.3 Na0.5MnO2 Nanosheet Assembled Nanowall Arrays for ASCs -- 9.4.4 FeOx/FeOOH Material as Negative Electrode -- 9.4.5 Carbon-Stabilized Fe3O4@C Nanorod Arrays as an Efficient Anode for SCs -- 9.4.6 Electrochemical Performance of Fe3O4 and Fe3O4@C NRAs as Anode -- 9.4.7 Construction of Na0.5MnO2//Fe3O4@C ASC and Electrochemical Performance -- 9.4.8 Highly Efficient NiCo2S4@Fe2O3//MnO2 ASC -- 9.4.9 Bi2O3 as Negative Electrode with Broaden Potential Window -- 9.5 Conclusion -- References -- Chapter 10 Aqueous Redox-Active Electrolytes -- 10.1 Introduction -- 10.2 Electrolyte Requirements for High-Performance Supercapacitors -- 10.2.1 Conductivity -- 10.2.2 Salt Effect -- 10.2.3 Solvent Effect -- 10.2.4 Electrochemical Stability -- 10.2.5 Thermal Stability -- 10.3 Effect of the Electrolyte on Supercapacitor Performance -- 10.3.1 Aqueous Electrolytes -- 10.3.2 Acidic Electrolytes -- 10.3.2.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.2.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 10.3.3 Alkaline Electrolytes -- 10.3.3.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.3.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 10.3.4 Neutral Electrolyte -- 10.3.4.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.4.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 10.4 Conclusion and Future Research Directions -- References -- Chapter 11 Strategies for Improving Energy Storage Properties -- 11.1 Introduction -- 11.2 Result and Discussion -- 11.2.1 Solid-State Batteries -- 11.2.2 Ultracapacitor -- 11.2.3 Flywheels.
11.2.4 Pumped Hydroelectric Storage Dams -- 11.2.5 Rail Energy Storage -- 11.2.6 Compressed Storage of Air -- 11.2.7 Liquid Air Energy Storage -- 11.2.8 Pumped Heat Electrical Storage -- 11.2.9 Redox Flow Batteries -- 11.2.10 Superconducting Magnetic Energy Storage -- 11.2.11 Methane -- 11.3 Energy Storage Systems Applications -- 11.3.1 Mills -- 11.3.2 Homes -- 11.3.3 Power Stations and Grid Electricity -- 11.3.4 Air Conditioning -- 11.3.5 Transportation -- 11.3.6 Electronics -- 11.4 Energy Storage Systems Economics -- 11.5 Impacts on Environment by Electricity Storage -- 11.6 Future Prospective -- 11.7 Conclusion -- References -- Chapter 12 State-of-the-Art in Electroceramics for Energy Storage -- 12.1 Introduction -- 12.2 Electroceramics for Energy-Storing Devices -- 12.2.1 Bulk-Based Ceramics -- 12.2.2 Lead-Free Ceramics -- 12.3 Ceramic Multilayers and Films -- 12.4 Ceramic Films for Energy Storage in Capacitors -- 12.5 Conclusion -- References -- Chapter 13 Lead-Free Ceramics for High Performance Supercapacitors -- 13.1 Introduction -- 13.2 Ceramics -- 13.2.1 General Classification of Ceramics -- 13.2.1.1 Ceramic-Based Capacitors -- 13.3 Types of Ceramic Capacitors -- 13.4 Overview of Ceramics for Supercapacitors -- 13.4.1 Metal Oxide Ceramics for Supercapacitors -- 13.4.2 Multi-Elemental Oxide Ceramics for Supercapacitors -- 13.4.2.1 Spinel Oxide Ceramics -- 13.5 Lead-Based Ceramics -- 13.6 Lead-Free Ceramics -- 13.6.1 Analysis of Pb-Free Hybrid Materials for Energy Conversion -- 13.7 Comparison of Pb-Based Ceramics and Pb-Free Ceramics -- 13.8 Conclusion -- References -- Index -- EULA.
Abstract:
ELECTROCERAMICS FOR HIGH PERFORMANCE SUPERCAPACITORS The book describes the state-of-the-art analyses of high-density supercapacitors. In the near future, high-energy density materials will be required to accommodate the increased demand for gadgets, hybrid cars, and massive electrical energy storage systems. Fuel cells, supercapacitors, and batteries have the highest energy densities, but traditional capacitors have gained attention for intermittent energy harvesting owing to their high energy transfer rate and quick charging/discharging capability. The large amount of electric breakdown strength and modest remnant polarization are keys to the high energy density in dielectric capacitors. Above 100??C or 212??F, polymer dielectric capacitors become unstable and begin to suffer a dielectric breakdown. Hence, dielectric ceramics are the sole viable option for high-temperature applications. This book provides a basic understanding of dielectric-based energy harvesting. After a detailed analysis of the state-of-the-art, it proceeds to explain the specific strategies to enhance energy storage features, including managing the local structure and phases assembly, raising the dielectric width, and enhancing microstructure and electrical uniformity. Also discussed is the need for novel materials with applications in high-density supercapacitors. Audience The book is designed for engineers, industrialists, physicists, scientists, and researchers who work on the applications of high-density supercapacitors.
Local Note:
John Wiley and Sons
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394167166Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 598680-1001 | TK7872 .C65 E44 2024 | Searching... | Searching... |
