Cover image for Green chemical synthesis with microwaves and ultrasounds
Title:
Green chemical synthesis with microwaves and ultrasounds
Author:
Verma, Dakeshwar Kumar, editor.
ISBN:
9783527844494

9783527844470
Physical Description:
1 online resource
Contents:
About the Editors -- Preface -- 1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles 1 Sumit Kumar, Amrutlal Prajapat, Sumit K. Panja, and Madhulata Shukla -- 1.1 Introduction -- 1.2 Cavitation History -- 1.2.1 Basics of Cavitation -- 1.2.2 Types of Cavitation -- 1.3 Application of Ultrasound Irradiation -- 1.3.1 Sonoluminescence and Sonophotocatalysis -- 1.3.2 Industrial Cleaning -- 1.3.3 Material Processing -- 1.3.4 Chemical and Biological Reactions -- 1.4 Conclusion -- Acknowledgments -- References -- 2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment 21 Raghvendra K. Mishra, Akshita Yadav, Vinayak Mishra, Satya N. Mishra, Deepa S. Singh, and Dakeshwar Kumar Verma -- 2.1 Introduction -- 2.1.1 Historical Background -- 2.1.2 Green Chemistry Principles for Sustainable System -- 2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory -- 2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation -- 2.4 Microwave Irradiation Molecular Rotation -- 2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation -- 2.5.1 Electromagnetic Radiations and Microwave -- 2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating -- 2.6 Physical Principles of Microwave Heating and Equipment -- 2.7 Green Chemistry Through Microwave Heating: Applications and Benefits -- 2.8 Conclusion -- References -- 3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation 69 Shailendra Yadav, Dheeraj S. Chauhan, and Mumtaz A. Quraishi -- 3.1 Introduction -- 3.2 A Brief Overview of Green Chemistry -- 3.2.1 Definition and Historical Background -- 3.2.2 Significance -- 3.3 Multicomponent Reactions -- 3.4 Solid Phase Reactions -- 3.5 Microwave Induced Synthesis -- 3.6 Ultrasound Induced Synthesis -- 3.7 Green Chemicals and Solvents -- 3.8 Conclusions and Outlook -- References -- 4 Metal-Catalyzed Reactions Under Microwave and Ultrasound Irradiation 83 Suresh Maddila, Immandhi S.S. Anantha, Pamerla Mulralidhar, Nagaraju Kerru, and Sudhakar Chintakula -- 4.1 Ultrasonic Irradiation -- 4.1.1 Iron-Based Catalysts -- 4.1.2 Copper-Based Catalysts -- 4.1.2.1 Dihydropyrimidinones by Cu-Based Catalysts -- 4.1.2.2 Dihydroquinazolinones by Cu-Based Catalysts -- 4.1.3 Misalliances Metal-Based Catalysts -- 4.2 Microwave-Assisted Reactions -- 4.2.1 Solid Acid and Base Catalysts -- 4.2.1.1 Condensation Reactions -- 4.2.1.2 Cyclization Reactions -- 4.2.1.3 Multi-component Reactions -- 4.2.1.4 Friedel-Crafts Reactions -- 4.2.1.5 Reaction Involving Catalysts of Biological Origin -- 4.2.1.6 Reduction -- 4.2.1.7 Oxidation -- 4.2.1.8 Coupling Reactions -- 4.2.1.9 Micelliances Reactions -- 4.2.1.10 Click Chemistry -- 4.3 Conclusion -- Acknowledgments -- References -- 5 Microwave- and Ultrasonic-Assisted Coupling Reactions 133 Sandeep Yadav, Anirudh P.S. Raman, Kashmiri Lal, Pallavi Jain, and Prashant Singh -- 5.1 Introduction -- 5.2 Microwave -- 5.2.1 Microwave-Assisted Coupling Reactions -- 5.2.2 Ultrasound-Assisted Coupling Reactions -- 5.3 Conclusion -- References -- 6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions 157 Sheryn Wong and Anton V. Dolzhenko -- 6.1 Introduction -- 6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation -- 6.2.1 Piloty-Robinson Pyrrole Synthesis -- 6.2.2 Clauson-Kaas Pyrrole Synthesis -- 6.2.3 Paal-Knorr Pyrrole Synthesis -- 6.2.4 Paal-Knorr Furan Synthesis -- 6.2.5 Paal-Knorr Thiophene Synthesis -- 6.2.6 Gewald Reaction -- 6.2.7 Fischer Indole Synthesis -- 6.2.8 Bischler-Möhlau Indole Synthesis -- 6.2.9 Hemetsberger-Knittel Indole Synthesis -- 6.2.10 Leimgruber-Batcho Indole Synthesis -- 6.2.11 Cadogan-Sundberg Indole Synthesis -- 6.2.12 Pechmann Pyrazole Synthesis -- 6.2.13 Debus-Radziszewski Reaction -- 6.2.14 van Leusen Imidazole Synthesis -- 6.2.15 van Leusen Oxazole Synthesis -- 6.2.16 Robinson-Gabriel Reaction -- 6.2.17 Hantzsch Thiazole Synthesis -- 6.2.18 Einhorn-Brunner Reaction -- 6.2.19 Pellizzari Reaction -- 6.2.20 Huisgen Reaction -- 6.2.21 Finnegan Tetrazole Synthesis -- 6.2.22 Four-component Ugi-azide Reaction -- 6.2.23 Kröhnke Pyridine Synthesis -- 6.2.24 Bohlmann-Rahtz Pyridine Synthesis -- 6.2.25 Boger Reaction -- 6.2.26 Skraup Reaction -- 6.2.27 Gould-Jacobs Reaction -- 6.2.28 Friedländer Quinoline Synthesis -- 6.2.29 Povarov Reaction -- 6.3 Conclusion -- Acknowledgments -- References -- 7 Microwave- and Ultrasound-Assisted Enzymatic Reactions 185 Nafseen Ahmed, Chandan K. Mandal, Varun Rai, Abbul Bashar Khan, and Kamalakanta Behera -- 7.1 Introduction -- 7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes -- 7.3 Principle of Ultrasonic-Assisted Enzymolysis -- 7.4 Applications of Ultrasonic-Assisted Enzymolysis -- 7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted -- 7.4.2 Modification of Protein Functionality -- 7.4.3 Enhancement of Biological Activity -- 7.4.4 Ultrasonic-Assisted Acceleration of Hydrolysis Time -- 7.5 Enzymatic Reactions Supported by Ultrasound -- 7.5.1 Lipase -- 7.5.2 Protease -- 7.5.3 Polysaccharide Enzymes -- 7.6 Biodiesel Production via Ultrasound-Supported Transesterification -- 7.6.1 Homogenous Acid-Catalyzed Ultrasound-Assisted Transesterification -- 7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis -- 7.6.3 Heterogeneous Acid-Catalyzed Ultrasound-Assisted Transesterification -- 7.6.4 Heterogeneous Base-Catalyzed Ultrasound-Assisted Transesterification -- 7.6.5 Enzyme-Catalyzed Ultrasound-Assisted Transesterification -- 7.7 Conclusions -- Acknowledgments -- References -- 8 Microwave- and Ultrasound-Assisted Synthesis of Polymers 219 Anupama Singh, Sushil K. Sharma, and Shobhana Sharma -- 8.1 Introduction -- 8.2 Microwave-Assisted Synthesis of Polymers -- 8.3 Ultrasound-Assisted Synthesis of Polymers -- 8.4 Conclusion -- References -- 9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation 235 Ahmed A. Mohamed -- 9.1 Introduction -- 9.2 Synthesis of Metal Nanoparticles -- 9.3 Synthesis of Carbon Dots -- 9.4 Synthesis of Metal Oxides -- 9.5 Synthesis of Silicon Dioxide -- 9.6 Conclusion -- References -- 10 Microwave- and Ultrasound-Assisted Synthesis of Metal-Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) 249 Sanjit Gaikwad and Sangil Han -- 10.1 Introduction -- 10.2 Principles -- 10.2.1 Principles of Microwave Heating -- 10.2.2 Principle of Ultrasound-Assisted Techniques -- 10.2.3 Advantages and Disadvantages of Microwave- and Ultrasound-Assisted Techniques -- 10.3 MOF Synthesis by Microwave and Ultrasound Method -- 10.3.1 Microwave-Assisted Synthesis of MOF -- 10.3.2 Ultrasound-Assisted Synthesis of MOFs -- 10.4 Factors That Affect MOF Synthesis -- 10.4.1 Solvent -- 10.4.2 Temperature and pH -- 10.5 Application of MOF -- 10.6 COF Synthesis by Microwave and Ultrasound Method -- 10.6.1 Ultrasound-Assisted Synthesis of COFs -- 10.6.2 Microwave-Assisted Synthesis of COF -- 10.6.3 Structure of COF (2D and 3D) -- 10.7 Factors Affecting the COF Synthesis -- 10.8 Applications of COFs -- 10.9 Future Predictions -- 10.10 Summary -- Acknowledgments -- References -- 11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation 283 R.M. Abdel Hameed, Amal Amr, Amina Emad, Fatma Yasser, Haneen Abdullah, Mariam Nabil, Nada Hazem, Sara Saad, and Yousef Mohamed -- 11.1 Introduction -- 11.2 Wastewater Treatment -- 11.3 Biodiesel Production -- 11.4 Oxygen Reduction Reaction -- 11.5 Alcoholic Fuel Cells -- 11.6 Conclusion and Future Plans -- References -- 12 Comparative Studies on Thermal, Microwave-Assisted, and Ultrasound-Promoted Preparations 337 Tri P. Adhi, Aqsha Aqsha, and Antonius Indarto -- 12.1 Introduction -- 12.1.1 Background on Preparative Techniques in Chemistry -- 12.1.2 Overview of Thermal, Microwave-Assisted, and Ultrasound-Promoted Preparations -- 12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies -- 12.1.3.1 Optimization of Conditions -- 12.1.3.2 Efficiency Improvement -- 12.1.3.3 Methodological Advances -- 12.1.3.4 Sustainability and Green Chemistry -- 12.2 Fundamentals of Thermal, Microwave-Assisted, and Ultra.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 599052-1001 QD262 .G74 2024
Searching...

On Order