Cover image for Progress in adhesion and adhesives. Volume 8
Title:
Progress in adhesion and adhesives. Volume 8
Author:
Mittal, K. L., 1945- editor.
ISBN:
9781394238231

9781394238224
Physical Description:
1 online resource.
Series:
Adhesion and adhesives : fundamental and applied aspects

Adhesion and adhesives.
Contents:
Preface xiii--1 Limitations of Multicomponent Theories in Surface Thermodynamics and Adhesion Science 1, C. Della Volpe and S. Siboni--1.1 Introduction 1--1.2 Acid-Base Theories 7--1.2.1 Owens-Wendt Model 9--1.2.2 van Oss-Chaudhury-Good (vOCG) Theory 10--1.2.3 Chang-Chen Theory 13--1.3 General Criticism of Acid-Base Theories 17--1.3.1 About High-Energy Solid Surfaces 17--1.3.2 About Geometric Mean Approximation for Dispersion Interactions 19--1.3.3 Tabulated Values of Surface Free Energy Components for Standard Liquids 20--1.3.4 Connections with Linear Free Energy Relationships and Multiplicity of Scales 21--1.4 Criticism of Specific Acid-Base Models 23--1.4.1 Owens-Wendt Model 23--1.4.2 van Oss, Chaudhury, and Good Acid-Base Model 24--1.4.3 Chang-Chen Acid-Base Model 26--1.5 More Fundamental Criticism of Acid-Base Models 26--1.6 Summary 29

2 Plasma-Deposited Polymer Layers as Adhesion Promoters 37, Jörg Florian Friedrich--2.1 Introduction 38--2.1.1 History 38--2.1.2 General View on Adhesion Promotion 39--2.1.3 Importance of Adhesion-Promoting Polymer Layers 44--2.1.4 Virtues of Plasma Polymer Layers 46--2.1.5 Attempts to Modify Fillers, Fibers and Foils with Adhesion-Promoting Plasma Polymers 49--2.2 Parameters Affecting the Performance of Plasma Polymer Layer 52--2.2.1 Chemical Nature of Plasma Polymer 52--2.2.2 Plasma Polymerization Mechanism 55--2.2.3 Adhesion Promotion 57--2.2.4 Loss of Monosort Functional Groups During Plasma Polymerization 59--2.2.4.1 Allylamine 59--2.2.4.2 Allyl Alcohol 62--2.2.4.3 Acrylic Acid 63--2.2.4.4 Allyl Bromide 63--2.2.5 Problematic Aspects of Plasma Polymers 64--2.2.6 Thickness Variation 69--2.2.7 Mechanical Properties of Plasma Polymers 69--2.2.8 Need for Flexibility Along the Interface 70--2.2.9 Supermolecular Structures in Plasma Polymers? 71--2.2.10 Trapped Radicals as Adhesion Promoter 71--2.3 Effect of Plasma Polymer Layers on Adhesion of Laminates 76--2.3.1 Peel Strength of Plasma Polymers to Metals and Polymers 76--2.3.2 Influence of Flexibility Along the Aluminium-Plasma Polymer Interface on Peel Strength 78--2.3.3 Dependence of Al Adhesion to Functional Group of Plasma Polymer 80--2.3.4 Plasma Polymers as Substitute for Flexible Aliphatic Spacer Molecules 81--2.3.5 Variation of the Density of Functional Groups by Copolymerization in the Plasma 85--2.3.6 Ultimate Adhesion 86--2.3.7 Atmospheric Barrier Discharge 91--2.3.8 Prevention of Post-Plasma Ageing of Deposited Plasma Polymer Films 95--2.3.9 Other Alternatives for Deposition of Adhesion-Promoting Polymer Layers 97--2.4 Summary and Conclusions 103

3 Functional Interlayers Developed to Control Interfacial Adhesion in Polymer Composites Reinforced with Glass and Basalt Fibers 119, Tomas Plichta and Vladimir Cech--3.1 Introduction 120--3.2 Materials and Methods 123--3.2.1 Materials 123--3.2.2 Deposition Chambers 125--3.2.3 Thin Film Deposition 125--3.2.4 Spectroscopic Ellipsometry 126--3.2.5 Mechanical Profilometry 126--3.2.6 Mass Spectrometry 127--3.2.7 Fourier Transform Infrared Spectrometry -- FTIR 127--3.2.8 X-Ray Photoelectron Spectroscopy -- XPS 128--3.2.9 Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analysis 128--3.2.10 Surface Free Energy 129--3.2.11 Nanoscratch Test and Friction Test 129--3.2.12 Nanoindentation 131--3.2.13 Modulus Mapping 132--3.2.14 Atomic Force Microscopy 133--3.2.15 Composite Preparation 134--3.2.16 Microindentation Test 134--3.2.17 Short-Beam Shear Test 135--3.2.18 Push-Out Test 136--3.3 Results and Discussion 137--3.3.1 Why Tetravinylsilane? 137--3.3.2 What is a More Appropriate Quantity to Characterize Adhesion: Critical Normal Load or Work of Adhesion 140--3.3.3 Study of Interphase Region 150--3.3.4 From Thin Films Adhesion to the Interfacial Shear Strength of Composites 154--3.3.5 Influence of Pretreatment and Post-Treatment of GFs and Deposited Interlayers and Bilayers on IFSS 164--3.3.6 From Critical Normal Load through Micromechanical to Macromechanical Properties GFRCs 166--3.3.7 Basalt Fibers in Reinforced Composites 175--3.4 Prospects 177--3.5 Summary 178--3.6 Acknowledgement 180

4 Hydrophobic Materials and Coatings from Natural Sources 189, Salvador Pérez-Huertas, Thomas Len and Konrad Terpilowski--4.1 Introduction 190--4.2 Hydrophobization of Natural Materials 193--4.2.1 Chemical Modifications 193--4.2.2 Physical Modifications 201--4.3 Bio-Based Coatings 207--4.4 Bio-Based Hydrophobic Surfaces and Coatings; Applications 208--4.5 Summary and Outlook 212

5 Mechanics of Ice Adhesion 221, Sina Nazifi and Hadi Ghasemi--5.1 Introduction 222--5.2 Work of Adhesion 223--5.2.1 Interfacial Bonds 225--5.2.2 Roughness 226--5.2.3 Plastic Energy Dissipation 227--5.3 Macroscopic Work of Fracture 228--5.3.1 Energy Release Rate 230--5.3.2 Interface Crack Growth Resistance 231--5.4 Modeling of Ice Adhesion 233--5.4.1 Ice Adhesion to Plastics 233--5.4.2 Ice Adhesion to Elastomers 234--5.4.3 Ice Adhesion to Non-Homogeneous Surfaces 236--5.4.4 Ice Adhesion to Plasticized Polymers 237--5.4.5 Ice Adhesion to Low Interfacial Toughness Surfaces 238--5.4.6 Ice Adhesion to Fracture-Controlled Surfaces 239--5.5 Fracture Mechanics Approach to Describe the Ice Adhesion 241--5.6 Summary 245

6 Epoxy Adhesive Technology: Latest Developments and New Trends 251, Chunfu Chen--6.1 Introduction 252--6.2 Thermal Low Temperature Cure Epoxy Adhesives 253--6.3 Thermal Snap Cure Epoxy Bonding Technology 260--6.4 UV Cure Cationic Epoxy Adhesive 262--6.5 Dual Cure Hybrid Epoxy Adhesive 265--6.6 High Performance Toughened Epoxy Adhesive 269-- --6.7 Sustainable Epoxy Adhesive Development 270--6.8 Summary 272

7 Emerging Applications of Hot-Melt Adhesives for Automobile Assembly 283, Sarang Subhashchandra Shindalkar and Balasubramanian Kandasubramanian--p>7.1 Introduction 284--7.2 Automobile Assembly 285--7.3 Parameters Studied to Determine HMA Performance 286--7.3.1 Glass Transition Temperature (Tg) 287--7.3.3 Density as a Function of Temperature 289--7.3.4 Single Lap Joint (SLJ) Test 290--7.3.5 Environmental Stability 290--7.4 Commercially Available HMA Products in Automotive Industry 292--7.5 Prospects 297--7.6 Summary 297

8 Lifetime Estimation of Thermoset Adhesives by Physical and Chemical Ageing Processes 305, Bikash Chandra Chakraborty--8.1 Introduction 306--8.1.1 Physical and Chemical Ageing of Polymers 306--8.1.2 Ageing of Adhesives 308--8.1.3 Design of Ageing Study 309--8.2 Physical Ageing 310--8.2.1 Segmental Relaxation and Transitions 310--8.2.2 Concept of Approach to Equilibrium 311--8.2.3 Basic Characteristics 312--8.2.4 Instantaneous and Delayed Creep 315--8.2.4.1 Time-Temperature Superposition 318--8.2.4.2 Time-Temperature-Stress Superposition 320--8.2.4.3 Example of Physical Ageing 323--8.2.4.4 Criticality in Physical Ageing Study 328--8.2.4.5 Conclusion 329--8.2.5 Ageing Study with Stress & Temperature 329--8.3 Chemical Ageing 335--8.3.1 Thermal Degradation Study by TGA 336--8.3.2 Basic TGA Kinetic Expression 337--8.3.3 Isoconversion and Model-Free Kinetics 339--8.3.3.1 Differential Methods 339--8.3.3.2 Integral Methods 341--8.3.3.3 Combined Method 341--8.3.3.4 Advanced Isoconversion Kinetics 343--8.3.3.5 Accuracy of Kinetic Parameters 343--8.3.4 Life Estimation 347--8.3.4.1 Example 349--8.3.4.2 Conclusion 354--8.4 Summary 355

9 Progress in Nondestructive Evaluation and Condition Monitoring of Adhesive Joints 361, Pouria Meshkizadeh and Mohammadreza Farahani--9.1 Introduction 361--9.2 Acoustic Emission (AE) 363--9.2.1 Common Acoustic Emission Features and Operating Parameters 364--9.2.2 AE for Locating Damage Source 365--9.2.3 AE for Damage Evaluation 365--9.3 Infrared Thermography (IRT) 374--9.3.1 Active IRT for Damage Evaluation 375--9.3.2 IRT for Monitoring Structural Integrity of Loaded Structures 379--9.3.3 Estimating the Depth of Defects 381--9.4 Electrical Impedance Tomography (EIT) 382--9.4.1 EIT for Evaluating the Quality of Conductive Network 383--9.4.2 EIT for Damage Stage Evaluation and Defect Detection 385--9.5 Other Advanced Methods 388--9.5.1 Digital Image Correlation (DIC) 388--9.5.2 Ultrasonic Test (UT) 391--9.6 Summary 393--References 394--Index 405
Abstract:
The book series "Progress in Adhesion and Adhesives" was conceived as an annual publication and the premier volume made its debut in 2015. The series has been well-received as it is unique and provides substantive and curated review chapters on subjects that touch many disciplines. The current book contains nine chapters on topics that include multi-component theories in surface thermodynamics and adhesion science; plasma-deposited polymer layers as adhesion promotors; functional interlayers to control interfacial adhesion in reinforced polymer composites; hydrophobic materials, and coatings from natural sources; mechanics of ice adhesion; epoxy adhesives technology: latest developments and trends; hot-melt adhesives for automobile assembly; lifetime estimation of thermostat adhesives by physical and chemical aging processes; and nondestructive evaluation and condition monitoring of adhesive joints. The volume will appeal to adhesionists, adhesive technologists, polymer scientists, materials scientists, and those involved/interested in adhesive bonding, plasma polymerization, adhesion in polymer composites, durability and testing of adhesive joints, materials from natural sources, and ice adhesion and mitigation.
Local Note:
John Wiley and Sons
Added Author:
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 599350-1001 TA455 .A34 P76 2024
Searching...

On Order