
Title:
Hydrogen Energetics : A Future Clean Energy Carrier.
Author:
Press, Roman J.
ISBN:
9781394173303
9781394173310
9781394173297
Edition:
1st ed.
Physical Description:
1 online resource (243 pages)
General Note:
7.3.12.1 Environmental Impact and Recycling.
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Terminology -- 1.2 Sustainability and Climate Change -- 1.3 Decarbonization -- 1.4 Climate Change -- 1.5 Energy Ethics -- 1.6 Hydrogen Economy: Pros and Cons -- 1.6.1 Incentives for Transition to Hydrogen -- 1.6.2 Existing Limitations -- Chapter 2 Energy Resources -- 2.1 Nonrenewable Energy Sources -- 2.1.1 Advantages and Disadvantages -- 2.1.2 Coal -- 2.1.3 Petroleum -- 2.1.4 Natural Gas -- 2.1.4.1 Advantages and Disadvantages -- 2.2 Renewable Energy -- 2.2.1 Solar Energy -- 2.2.1.1 Solar Energy Benefits -- 2.2.1.2 Solar Energy Disadvantages -- 2.2.1.3 Solar Cells -- 2.2.2 Wind Energy -- 2.2.2.1 Advantages of Wind Power -- 2.2.2.2 Disadvantages of Wind Power -- 2.2.3 Hydroelectric Power -- 2.2.3.1 Advantages of Hydroelectricity -- 2.2.3.2 Disadvantages of Hydroelectricity -- 2.2.4 Biomass Energy -- 2.2.5 Biomass Energy from Landfills and Biofuels -- 2.2.5.1 Benefits of Biofuels -- 2.2.5.2 Disadvantages of Biofuels -- 2.2.5.3 Summary of Hay as a Biofuel -- 2.2.6 Geothermal Energy: Harnessing the Earth's Heat -- 2.2.6.1 Types of Geothermal Resources -- 2.2.6.2 Natural Hydrothermal Features -- 2.2.6.3 Advantages of Geothermal Energy -- 2.2.6.4 Challenges of Geothermal Energy -- 2.2.7 Geothermal Heating: Tapping into Earth's Stable Temperatures -- 2.2.7.1 How Geothermal Heating Works -- 2.2.7.2 Components of Geothermal Heat Pump Systems -- 2.2.7.3 Efficiency Comparison -- 2.2.7.4 Advantages of Geothermal Heating -- 2.2.7.5 Challenges -- 2.2.8 Ocean Energy: Harnessing the Power of Tides -- 2.2.8.1 Tidal Energy Mechanisms -- 2.2.8.2 Environmental Impact and Global Presence -- 2.2.8.3 Global Renewable Energy Trends -- 2.3 Nuclear Energy: An Alternative Power Source -- 2.3.1 Advantagesand Disadvantages of Nuclear Power -- 2.3.1.1 Advantages of Nuclear Power.
2.3.1.2 Disadvantages of Nuclear Power -- 2.3.2 Nuclear Fission and Uranium Enrichment -- 2.3.3 Fusion: The Future of Nuclear Energy -- Chapter 3 Hydrogen Properties -- 3.1 General Characteristics and Physical Properties of Hydrogen -- 3.1.1 Chemical Properties of Hydrogen -- 3.1.2 Chemical Reactions of Hydrogen -- 3.1.3 Health Effects of Hydrogen -- 3.1.4 Hydrogen Isotopes -- 3.2 Hydrogen Bonding -- 3.3 Occurrence of Hydrogen -- 3.4 Comparing Hydrogen to Other Fuels -- Chapter 4 Fuel Cells: Essential Information -- 4.1 Overview -- 4.2 FC Technologies: Classification and Comparison -- 4.2.1 Polymer Electrolyte Membrane Fuel Cells -- 4.2.1.1 PEMFC Fabrication Hardware -- 4.2.1.2 Membrane Electrode Assembly -- 4.2.1.3 The Polymer Electrolyte Membrane (PEM) -- 4.2.1.4 The Electrodes -- 4.2.1.5 Bipolar Plates -- 4.2.1.6 The PEMFC Stack -- 4.2.1.7 Electrode Poisoning -- 4.2.1.8 FC Reformers -- 4.2.2 Alkaline Fuel Cell (AFC) -- 4.2.3 Electrodes in AFCs -- 4.2.4 Molten Carbonate Fuel Cell (MCFC) -- 4.2.5 Electrodes in MCFCs -- 4.2.6 Phosphoric Acid Fuel Cell (PAFC) -- 4.2.7 Solid Oxide Fuel Cell (SOFC) -- 4.2.8 Electrodes in SOFCs -- 4.2.9 Direct Methanol Fuel Cell -- 4.3 FC Architecture -- 4.3.1 FCPS Subsystems -- 4.3.2 Balance of Plant -- 4.3.3 Membraneless FC -- Chapter 5 Hydrogen Technology Essentials -- 5.1 Hydrogen Safety -- 5.1.1 Liquid Hydrogen Safety -- 5.1.2 Flammability -- 5.1.2.1 Containers -- 5.1.2.2 Tanks -- 5.1.3 Transferring Liquid Hydrogen -- 5.1.3.1 Shipment -- 5.1.4 Safety Considerations -- 5.1.5 Hydrogen-Ammonia Blend Safety -- 5.1.6 Codes and Standards for Safety -- 5.1.7 Hydrogen Sensors -- 5.1.8 Hydrogen Safety-Related Properties -- 5.2 Energy Storage Technologies -- 5.2.1 Chemical Storage -- 5.2.1.1 Flow Batteries -- 5.2.1.2 Powerpaste -- 5.2.1.3 Power to Gas -- 5.2.1.4 Power to Liquid -- 5.2.1.5 Pumped-hydroStorage.
5.2.1.6 Underground Hydrogen Storage -- 5.2.1.7 Aluminum as an Energy Source -- 5.2.1.8 Home Energy Storage -- 5.2.1.9 Grid Electricity and Power Stations -- 5.2.1.10 Vehicle-to-GridStorage -- 5.2.1.11 Economics of Energy Storage -- 5.3 Hydrogen Storage for Transportation -- 5.3.1 Storage of Hydrogen as a Compressed Gas -- 5.3.2 Storage of Hydrogen as a Liquid -- 5.3.3 Solid Hydrogen Storage: Chemical Methods -- 5.3.4 Reversible Metal Hydride-Hydrogen Storage -- 5.3.4.1 Metal Hydride-Hydrogen Storage -- 5.3.5 Alkali Metal Hydrides -- 5.3.6 Carbon Nanostructures -- 5.3.7 Other Technologies -- 5.4 Hydrogen Infrastructure -- 5.5 Hydrogen Transportation via Pipeline -- 5.6 Ammonia as an Energy Carrier -- 5.6.1 Compressed Hydrogen -- 5.6.2 Liquid Hydrogen -- 5.7 Blending Hydrogen in Natural Gas Pipelines -- 5.7.1 Methanol Transportation as a Comparison -- 5.7.2 Petroleum Transportation as a Comparison -- 5.7.3 Realistic Approaches for Hydrogen Transportation -- 5.8 Hydrogen Bonding -- 5.9 Hydrogen Extraction from Blended Mixtures -- 5.9.1 Pressure Swing Adsorption (PSA) Technology -- 5.9.2 Membrane Separation Technology -- 5.9.3 Electrochemical Hydrogen Separation (EHS) -- 5.9.4 Cost Analysis of Hydrogen Extraction -- Chapter 6 Hydrogen Production: Current Practices and Emerging Technologies -- 6.1 Hydrogen Production from Fossil Sources -- 6.1.1 Steam Methane Reforming (SMR) -- 6.1.1.1 Chemical Equation and Purpose -- 6.1.1.2 Process Description -- 6.1.2 Methane Pyrolysis -- 6.1.2.1 Process Overview -- 6.1.2.2 Temperature and Variations -- 6.1.2.3 Chemical Reaction and Environmental Impact -- 6.1.3 Coal Gasification -- 6.1.3.1 Water-Gas Shift Reaction -- 6.1.3.2 Hydrogen Purification -- 6.1.3.3 Commercial Coal Gasification Processes -- 6.1.3.4 Comparison with Steam Reforming of Natural Gas -- 6.1.4 Partial Oxidation of Hydrocarbons.
6.1.4.1 Fundamentals of the Process -- 6.1.4.2 Enhancing Hydrogen Content -- 6.1.4.3 Application in Heavy Hydrocarbons -- 6.1.5 Petroleum-Refining Operations -- 6.1.5.1 Hydrogen Recovery in Refining Processes -- 6.1.5.2 Environmental Impact of Conventional Hydrogen Production -- 6.1.5.3 Ongoing Research and Development Efforts -- 6.2 Hydrogen Production from Renewable Sources -- 6.2.1 Green Hydrogen Production -- 6.2.1.1 Electrolysis and Its Applications -- 6.2.1.2 Challenges and Potential of Green Hydrogen -- 6.2.1.3 Environmental Impact -- 6.2.2 Blue Hydrogen Production -- 6.2.3 Pink Hydrogen -- 6.2.3.1 The Future of Nuclear-GeneratedHydrogen -- 6.2.4 Gray Hydrogen -- 6.2.4.1 Overview of Gray Hydrogen -- 6.2.4.2 Costs and Environmental Implications -- 6.2.5 Turquoise Hydrogen -- 6.2.5.1 Innovative Production of Turquoise Hydrogen -- 6.2.6 Yellow Hydrogen -- 6.2.6.1 Thermal Solar Production of Yellow Hydrogen -- 6.3 Current Industrial Hydrogen Production -- 6.3.1 Global Production and Market Value -- 6.3.2 Industrial Methods of Hydrogen Production -- 6.3.3 Electrolysis of Water -- 6.3.3.1 Historical Development and Fundamentals -- 6.3.3.2 Electrolysis Techniques in Hydrogen Production -- 6.3.3.3 Electrolysis Reactions -- 6.3.3.4 High-PressureElectrolysis -- 6.3.3.5 High-TemperatureElectrolysis -- 6.3.3.6 The Evolution of Electrolysis Technology -- 6.3.4 Water Splitting Using Solar Energy -- 6.3.4.1 Thermochemical Cycles for Water Splitting -- 6.3.4.2 Photoelectrochemical Water Splitting -- 6.3.4.3 Photocatalyst Development by Panasonic Corp. -- 6.3.4.4 Wind Energy and Hydrogen Production -- 6.3.5 Biomass Gasification with Bacteria -- 6.3.6 Hydrogen as a By-product of Other Chemical Processes -- 6.3.6.1 Ammonia Dissociation -- 6.3.6.2 Hydrogen in Industrial Production -- 6.3.7 Municipal Solid Waste (MSW) Utilization for Hydrogen Production.
6.3.7.1 Composition and Utilization of LFG -- 6.3.7.2 Potential for Hydrogen Production -- 6.4 Traditional Hydrogen Production Methods -- 6.4.1 Renewable Energy Sources in Hydrogen Production -- 6.5 Conclusion -- Chapter 7 Hydrogen Applications -- 7.1 Current Industrial Applications -- 7.1.1 Ammonia Synthesis -- 7.1.2 Food and Beverage Industry -- 7.1.3 Electronics Manufacturing -- 7.1.4 Pharmaceutical Industry -- 7.1.5 Glass, Cement, and Lime Production -- 7.1.6 Polymers -- 7.1.7 Metal Industry -- 7.1.8 Metallic Ore Reduction -- 7.1.9 Oil and Gas -- 7.1.10 Methanol Production -- 7.1.11 Automotive and Transportation -- 7.1.12 Space-Aviation -- 7.1.13 Hydrogen in Welding, Cutting, and Coating -- 7.1.14 Weather Balloons -- 7.1.15 Hydrogen as a Coolant -- 7.1.16 Searching Gas -- 7.1.17 Chemical Analysis -- 7.1.18 Isotope Applications -- 7.1.19 Burning Hydrogen for Electricity Generation -- 7.2 FC-Specific Applications -- 7.2.1 Stationary Power Production -- 7.2.2 FC Transportation -- 7.2.3 Well-to-Wheel Analysis -- 7.2.4 Practical Transportation Applications -- 7.2.5 Other Transport Applications -- 7.2.6 Micropower Systems -- 7.2.7 Mobile and Residential Power Systems -- 7.2.8 FCs for Space and Military Applications -- 7.2.9 Maritime Applications -- 7.2.10 Wearable Technology and Internet of Things (IoT) -- 7.2.11 Unmanned Underwater Vehicles (UUVs) -- 7.2.12 Emergency and Disaster Relief -- 7.3 Electric Batteries -- 7.3.1 History -- 7.3.2 Primary Batteries -- 7.3.3 Batteries for Portable Devices -- 7.3.4 Secondary Batteries -- 7.3.5 Traction Battery -- 7.3.6 Rechargeable Batteries -- 7.3.7 Lead-Acid Batteries -- 7.3.8 Lithium-ion Batteries -- 7.3.9 NiMH and High-Temperature Batteries -- 7.3.10 Molten Salt Battery -- 7.3.11 Recharging -- 7.3.11.1 Charging Infrastructure -- 7.3.11.2 EV Range and Battery Evolution -- 7.3.12 Battery Specifications.
Abstract:
"Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. It can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. This makes it an attractive fuel option for transportation and electricity generation applications being used in cars, houses, for portable power, etc. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources, and hydrogen fuel can be produced through several methods such as natural gas reforming (a thermal process), electrolysis, solar-driven and biological processes"-- Provided by publisher.
Local Note:
John Wiley and Sons
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394173310Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 599501-1001 | TP359 .H8 P74 2024 | Searching... | Searching... |
