
Title:
Photofunctional nanomaterials for biomedical applications
Author:
Li, Chunxia (Of Shandong da xue), editor.
ISBN:
9783527845347
9783527845330
Physical Description:
1 online resource (592 pages)
Contents:
1 General Introduction and Background of Photofunctional Nanomaterials in Biomedical Applications 1 Chunxia Li and Jun -- 1.1 Introduction to Nanomaterials -- 1.1.1 Surface and Interfacial Effects -- 1.1.2 Small Size Effect -- 1.1.3 Quantum Size Effect -- 1.1.4 Macroscopic Quantum Tunneling Effects -- 1.2 Introduction and Classification of Photofunctional Nanomaterials -- 1.2.1 Capture of Photons -- 1.2.2 Absorption and Conversion of Photons -- 1.2.3 Physical-chemical Processes at the Surface Interface -- 1.3 Introduction to Nanobiomedicine -- 1.3.1 Nano-drug Delivery Systems -- 1.3.2 Nano-imaging Technology -- 1.3.3 Nano-diagnostic Technologies -- 1.3.4 Nanotherapeutic Technology -- 1.3.5 Nano-biosensors -- 1.3.6 Tissue Engineering -- 1.4 Classification of Photofunctional Nanomaterials -- 1.4.1 Fluorescent Nanomaterials -- 1.4.1.1 Quantum Dots -- 1.4.1.2 Silicon-Based Fluorescent Nanomaterials -- 1.4.1.3 Rare Earth Luminescent Nanomaterials -- 1.4.1.4 Organic Fluorescent Nanomaterials -- 1.4.2 Photothermal Nanomaterials -- 1.4.2.1 Metallic Photothermal Nanomaterials -- 1.4.2.2 Semiconductor Photothermal Nanomaterials -- 1.4.2.3 Organic Photothermal Nanomaterials -- 1.4.2.4 Carbon-Based Photothermal Nanomaterials -- 1.4.2.5 Certain Two-Dimensional (2D) Nanomaterials -- 1.4.2.6 Biomass Photothermal Nanomaterials -- 1.4.3 Photodynamic Nanomaterials -- 1.4.3.1 Photosensitizer-Loaded Nanomaterials -- 1.4.3.2 Nanomaterials with Intrinsic Photodynamic Effects -- 1.4.3.3 Energy Conversion Nanomaterials for Photosensitizers -- 1.4.4 Photoelectrochemical Nanomaterials -- 1.4.4.1 Photocurrent Signal Generation Mechanism -- 1.4.4.2 Core Elements of Photoelectrochemical Biosensors -- 1.4.4.3 Types of Photoelectrochemical Biosensors -- 1.4.5 Photoacoustic Nanomaterials -- 1.4.5.1 Introduction to Photoacoustic Imaging -- 1.4.5.2 Selection of Photoacoustic Contrast Agents -- 1.5 Conclusion -- References -- 2 Mechanism in Rare-Earth-Doped Luminescence Nanomaterials 77 Yulei Chang -- 2.1 Introduction -- 2.2 Composition of RE-Doped Luminescence Nanomaterials: Substrate (Host), Activator, and Sensitizer -- 2.3 Mechanism of RE-Doped Luminescence Nanomaterials -- 2.3.1 Luminescence: Downshifting, Upconversion, and Downconversion -- 2.3.1.1 Downshifting Luminescence -- 2.3.1.2 Upconversion Luminescence (UCL) -- 2.3.1.3 Downconversion/Quantum Cutting (QC) -- 2.3.2 Nonradiative Transition: Energy Transfer and Migration -- 2.3.2.1 Energy Transfer (ET) -- 2.3.2.2 Energy Migration (EM) -- 2.4 Luminescence Modulation -- 2.4.1 Crystal Field (CF) Regulation -- 2.4.2 Surface Defects Passivation -- 2.4.3 ET Regulation -- 2.4.3.1 Multicolor Tuning (MCT) of UCL -- 2.4.3.2 Energy Transfer-Triggered Novel Upconversion Excitation -- 2.4.4 Cross-Relaxation (CR) Regulation -- 2.4.4.1 Alleviating Concentration Quenching (CQ) for Highly Doped UCNPs -- 2.4.4.2 NIR Downshifting Modulation by CR -- 2.4.5 Phonon-Assisted Energy Transfer (PAET) -- 2.4.6 Dye Sensitization -- 2.4.6.1 Dye-Sensitized Core Nanoparticles -- 2.4.6.2 Dye-Sensitized Core-Shell Nanoparticles -- 2.4.7 Combined Excitation Regulation -- 2.4.7.1 Esa -- 2.4.7.2 Sted -- 2.4.8 External Field Modulation -- 2.4.8.1 Magnetic Field Modulation -- 2.4.8.2 Electric Field Modulation -- 2.4.8.3 Plasma Resonance Enhancement -- References -- 3 Upconversion and NIR-II Luminescence Modulation of Rare-Earth Composites Using Material Informatics 117 Wenjing li and Ruichan -- 3.1 Introduction -- 3.2 Typical Processes of Upconversion Luminescence -- 3.2.1 Excited State Absorption -- 3.2.2 Photon Avalanche -- 3.2.3 Energy Transfer -- 3.2.4 Cross-Relaxation -- 3.2.5 Cooperative Upconversion -- 3.2.6 Second Harmonic Generation -- 3.3 Synthesis Methods of Upconversion Nanoparticles -- 3.3.1 Thermal Decomposition Methods -- 3.3.2 Hydrothermal/Solvothermal Method -- 3.3.3 Co-precipitation Method -- 3.3.4 Sol-Gel Method -- 3.3.5 Other Methods -- 3.4 Material Informatics in UCL -- 3.4.1 Genetic Algorithm -- 3.4.2 Particle Swarm Optimization -- 3.4.3 Simulated Annealing -- 3.4.4 Other Methods -- 3.5 Cancer Therapy Based on UCNPs -- 3.5.1 Photodynamic Therapy -- 3.5.2 Photothermal Therapy -- 3.5.3 Photo-Immunotherapy -- 3.5.4 Photo-Gene Therapy -- 3.6 Conclusion and Perspective -- References -- 4 Composites Based on Lanthanide-Doped Upconversion Nanomaterials and Metal-Organic Frameworks: Fabrication and Bioapplications 147 Ze Yuan and Xiaoji -- 4.1 Introduction -- 4.2 Fabrications of Composites -- 4.2.1 In Situ Encapsulation -- 4.2.2 Partial Embedment -- 4.2.3 Interfacial Attachment -- 4.3 Bioapplications -- 4.3.1 Therapy -- 4.3.2 Bioimaging -- 4.3.3 Biosensing -- 4.4 Conclusion and Perspectives -- References -- 5 Lanthanide-Doped Nanomaterials for Luminescence Biosensing and Biodetection 181 Zhijie Ju, Peng Zhao, and Renren Deng -- 5.1 Introduction -- 5.2 Basics of Optical Bioprobe and Lanthanide-Doped Nanoparticles -- 5.2.1 Design Considerations for Bioprobe Development -- 5.2.2 Characteristics of Lanthanide-Doped Nanoparticles -- 5.2.3 NIR Biological Windows -- 5.2.4 Energy Transfer: A Key Factor in Biodetection -- 5.3 Synthesis and Functionalization of Lanthanide-Dope Nanocrystals -- 5.3.1 Design and Synthesis of Core-Shell Structured Nanocrystals -- 5.3.1.1 Design of Upconversion Nanoparticles (UCNPs) -- 5.3.1.2 Design of Downshifting Nanoparticles (DSNPs) -- 5.3.2 Functionalization of Lanthanide-Doped Nanoparticles (LnNPs) -- 5.3.2.1 Amphiphilic Polymer Absorption -- 5.3.2.2 Ligand Removal -- 5.3.2.3 Ligand Exchange -- 5.3.2.4 Surface Silanization -- 5.4 Applications of Luminescence Biosensing and Biodetection -- 5.4.1 Temperature Sensing -- 5.4.2 pH Sensing -- 5.4.3 Detection of Biomolecules -- 5.4.4 Detection of Small Molecules and Ions -- 5.5 Integrated Devices for Point-of-Care Testing -- 5.6 Summary -- References -- 6 Rare Earth Luminescent Nanomaterials for Gene Delivery 219 Jiajun Li and Tao Zhang -- 6.1 Introduction -- 6.2 UCNPs Nanovectors -- 6.3 Surface Modification -- 6.3.1 Silica -- 6.3.2 Cationic Polymers -- 6.4 Increasing Endosomal Escape -- 6.5 Controlling Delivery Strategy -- 6.5.1 Photodegradable Polymers -- 6.5.2 Changes in Carrier Surface Charge -- 6.5.3 Photoisomerization -- 6.5.4 Microenvironments Stimulation -- 6.5.4.1 Reactive Oxygen Species (ROS) -- 6.5.4.2 Matrixmetallo Proteinases (MMPs) -- 6.5.5 Light Cage -- 6.5.6 Orthogonal Control -- 6.5.7 Release Monitoring -- 6.6 Gene Therapy and Syndication -- 6.6.1 Phototherapy -- 6.6.2 Chemotherapy -- 6.7 Other Lanthanide-Based Nanovectors -- 6.8 Perspective -- References -- 7 Biosafety of Rare-Earth-Doped Nanomaterials 247 Yang Li and Guanying Chen -- 7.1 Internalization of UCNPs into Cells -- 7.2 Distribution of UCNPs -- 7.3 Excretion Behavior of UCNPs -- 7.4 The Toxic Effect of Cell Incubated with UCNPs -- 7.5 Toxic Effect of UCNPs In Vivo -- 7.6 Conclusions and Prospects -- References -- 8 Design and Construction of Photosensitizers for Photodynamic Therapy of Tumor 269 Ruohao Zhang, Jing Feng, Yifei Zhou, Jitong Gong, and Hongjie Zhang -- 8.1 Introduction -- 8.2 Small Molecule Photosensitizers -- 8.2.1 Porphyrins -- 8.2.2 Phthalocyanines -- 8.2.3 BODIPYs -- 8.2.4 Indocyanine Dyes -- 8.2.5 AIEgens -- 8.3 Metal Complexes -- 8.3.1 Ru(II) Complexes -- 8.3.2 Ir(III) Complexes -- 8.3.3 MOFs -- 8.3.4 COFs -- 8.3.5 HOFs -- 8.4 Inorganic Photosensitizers -- 8.4.1 Carbon-Based Photosensitizers -- 8.4.2 Silicon-Based Photosensitizers -- 8.4.3 Simple Substance Photosensitizers -- 8.4.4 Metal Oxides-Based Photosensitizers -- 8.4.5 Lanthanide Upconversion Nanoparticles-Based PSs -- 8.5 Conclusions and Perspectives -- References -- 9 Persistent Luminescent Materials for Optical Information Storage Applications 305 Cunjian Lin, Yixi Zhuang, and Rong-Jun -- 9.1 Introduction -- 9.2 Luminescent Mechanism of Persistent Luminescent Materials with Deep Traps -- 9.3 Persistent Luminescent Materials with Deep Traps -- 9.3.1 Halides or Oxyhalides -- 9.3.2 Sulfides -- 9.3.3 Oxides -- 9.3.3.1 Monobasic Cation Oxide -- 9.3.3.2 Silicate/Germanate/Stannate -- 9.3.3.3 Aluminate/Gallate -- 9.3.3.4 Titanate/Zirconate -- 9.3.3.5 Oxide Glass -- 9.3.4 Nitride or Oxynitrides -- 9.4 Outlooks -- References.
10 The Application of Ternary Quantum Dots in Tumor-Related Marker Detection, Imaging, and Therapy 343 Ling Yang, Xiaojiao Kang, Jun Lin, and Ziyong Cheng -- 10.1 Introduction -- 10.1.1 Fundamental Properties of QDs -- 10.1.2 Synthesis Methods of QDs -- 10.1.2.1 Metal-Organic Synthesis Method -- 10.1.2.2 Hydrophilic Synthesis Method -- 10.1.2.3 Biosynthesis Method -- 10.1.3 Synthesis Methods of Ternary QDs -- 10.1.3.1 Hot-Injection Method -- 10.1.3.2 Ion Exchange Method -- 10.1.3.3 Hydrothermal Method -- 10.1.4 Performance Control of QDs -- 10.1.4.1 Core-Shell Structure -- 10.1.4.2 Alloying -- 10.1.4.3 Ioning -- 10.1.5 Modification of QDs -- 10.1.5.1 Surfacing Ligand Molecular Exchange -- 10.1.5.2 Amphiphilic Organic Macromolecular Coating -- 10.1.6 Characterization of QDs -- 10.1.7 Biomedical Applications of QDs -- 10.1.7.1 Biological Detection -- 10.1.7.2 Cell Imaging -- 10.1.7.3 Live Imaging -- 10.1.7.4 Tumor Therapy -- 10.2 Conclusion -- References -- 11 Nanomaterials-Induced Pyroptosis and Immunotherapy 373 Hao Chen, Binbin Ding, Jun Lin, and Ping'an -- 11.1 Discovery and Definition of Pyroptosis -- 11.2 Mechanisms of Pyroptosis -- 11.2.1 Inflammasome and Pyroptosis -- 11.2.2 Caspases, Gasdermins, and Pyroptosis -- 11.3 Pyroptosis and Tumor Immunotherapy -- 11.3.1 Ions Interference Therapy -- 11.3.2 TME-Responsive Pyroptosis Therapy -- 11.3.3 Demethylation-Activated Pyroptosis -- 11.3.4 The Other Pyroptosis Therapies -- 11.4 Summary and Outlook -- References -- 12 NIR Light-Activated Conversion Nanomaterials for Photothermal/Immunotherapy 399 Yaru Zhang and Zhiyao Hou -- 12.1 Introduction -- 12.2 The Photothermal Conversion Mechanism -- 12.3 Classification of Inorganic Photothermal Materials -- 12.3.1 Noble Metal Nanomaterials -- 12.3.2 Semiconductor Nanomaterials -- 12.3.2.1 Transition Metal Oxides -- 12.3.2.2 Transition Metal Chalcogenides -- 12.3.3 Carbon-Based Materials -- 12.3.4 Other Types of PTAs -- 12.4 Mechanisms of PTT and Immunotherapy -- 12.4.1 Mechanism of PTT -- 12.4.2 Response of Tumor Cells to Heat Stress -- 12.4.3 PTT-Induced Necrosis and Apoptosis -- 12.4.4 PTT-Induced Immunogenic Cell Death -- 12.4.5 The Impact of PTT on Tumor Microenvironment -- 12.5 Nanomaterial-Based Photothermal/Immunotherapy -- 12.5.1 PTT-Synergized ICB Therapy -- 12.5.1.1 CTLA-4 Checkpoint -- 12.5.1.2 PD-1/PD-L1 Checkpoint -- 12.5.1.3 Other Immune Checkpoints -- 12.5.2 PTT-Synergized Immunoadjuvant Therapy -- 12.5.3 PTT-Synergized Adoptive Cellular Immunotherapy -- 12.5.4 PTT-Synergized Therapeutic Cancer Vaccine -- 12.6 Summary and Outlook -- References -- 13 Near-Infrared Region-Responsive Antimicrobial Nanomaterials for the Treatment of Multidrug-Resistant Bacteria 449 Manlin Qi, Shangyan Shan, Biao Dong, and Lin Wang -- 13.1 Introduction -- 13.2 The Antibacterial Mechanisms of Photofunctional Antibacterial Nanomaterials -- 13.3 Photofunctional Nanomaterials and Antibacterial Activity Against MDR Bacteria -- 13.3.1 Representative NIR PDT Photosensitizers -- 13.3.1.1 NIR-Responsive Porphyrins -- 13.3.1.2 NIR-Responsive Phthalocyanines -- 13.3.2 NIR-Responsive PTT Agents -- 13.3.2.1 Gold Nanoparticles and Derived Nanostructures -- 13.3.2.2 Carbon Nanotubes -- 13.3.2.3 Graphene Oxide -- 13.3.2.4 Semiconductor Nanoparticles -- 13.3.3 NIR-Responsive PDT/PTT Agents -- 13.3.3.1 NIR Cyanine Dyes -- 13.3.3.2 NIR QDs -- 13.3.3.3 Aggregation-Induced Emission Luminogens -- 13.4 Limitations and Challenges -- 13.4.1 Common PDT or PTT Resistance Mechanism -- 13.4.1.1 Oxidative Stress Defense -- 13.4.1.2 Thermal Stress Defense -- 13.4.2 MDR Bacteria Drug Resistance Mechanism -- 13.5 Conclusions -- References -- 14 Photoelectrochemical Nanomaterials for Biosensing Applications 477 Qianqian Sun and Piaoping Yang -- 14.1 Introduction -- 14.2 Classification of Photoelectrochemical Materials -- 14.2.1 Inorganic Photoelectrochemical Materials -- 14.2.2 Organic Photoelectrochemical Materials -- 14.2.3 Composite Photoelectrochemical Materials -- 14.3 Introduction to Biorecognition Elements -- 14.4 Factors Affecting the Photocurrent Signal -- 14.5 Signal Amplification and Bursting Strategies -- 14.5.1 Photocurrent Signal Amplification Strategies -- 14.5.2 Photocurrent Signal Bursting Strategies -- 14.6 Applications of Photoelectrochemical Biosensors -- 14.6.1 Direct Photoelectrochemical Detection -- 14.6.2 Photoelectrochemical Enzyme Detection -- 14.6.3 Photoelectrochemical Nucleic Acid Detection -- 14.6.4 Photoelectrochemical Immunoassay -- 14.7 Challenges and Potential Clinical Applications -- References -- 15 X-Ray-Induced Photodynamic Therapy for Deep-Seated Tumors 507 Jinliang -- 15.1 Introduction -- 15.2 Mechanisms of Interaction Between X-Rays and Scintillation Materials -- 15.3 X-Ray-Sensitive Materials -- 15.3.1 Metallic Materials -- 15.3.1.1 Lanthanide-based Nanophosphors -- 15.3.1.2 Metal Cluster Nanomaterials -- 15.3.1.3 Long-Afterglow Luminescent Nanomaterials -- 15.3.1.4 Quantum Dots -- 15.3.1.5 Metal-Organic Complexes -- 15.3.1.6 Metal-Organic Frameworks (MOFs) -- 15.3.2 Nonmetallic Materials -- 15.3.2.1 Organic Materials -- 15.3.2.2 Nonmetallic Inorganic Materials -- 15.4 X-Ray-Activated Therapy -- 15.4.1 Type I X-Ray-Excited PDT -- 15.4.2 Type II X-Ray-Excited PDT -- 15.4.3 Combined Type I and Type II X-Ray-Excited PDT -- 15.4.4 X-Ray-Induced Generation of RNS for Dynamic Therapy -- 15.4.5 Synergistic Therapy -- 15.5 Conclusions and Perspectives -- References -- 16 Conclusions and Perspectives 549 Chunxia Li and Jun -- Index.
Abstract:
Summary of the controlled synthesis of photofunctional nanoparticles and their hybrid nanocomposites, as well as their potential in biomedical applications Photofunctional Nanomaterials for Biomedical Applications presents the latest research and developments surrounding photofunctional nanomaterials, including rare earth luminescence nanomaterials and photothermal agents, for biomedical applications related to imaging, biosensing, controlled drug delivery and release, and tumor diagnosis and therapy, as well as other applications such as bacteria engineering, optical information storage, acoustic sensing, and temperature detection. The book elucidates the underlying functioning mechanisms of these nanomaterials in depth and extensively discusses their current challenges and future development prospects. Written by two highly qualified professors with significant research experience in the field, Photofunctional Nanomaterials for Biomedical Applications discusses sample topics including: Fabrication of composites based on lanthanide-doped up conversion nanomaterials and metal-organic frameworks Photosensitizers for photodynamic therapy (PDT), covering basic principles of PDT, classifications of various photosensitizers, mechanisms during treatment, and x-ray-activated PDT Nanomaterials-induced pyroptosis and immunotherapy including pyroptosis pathways and their potential in immunotherapy, especially in activating effector T cells and promoting dendritic cell maturation Design of ternary quantum dots, antibacterial mechanisms in photofunctional antibacterial nanomaterials, and inorganic nanomaterials in photothermal therapy Establishing a robust groundwork for the future clinical translation, Photofunctional Nanomaterials for Biomedical Applications is an essential up-to-date reference on the subject for materials scientists, photochemists, biochemists, and electronic engineers.
Local Note:
John Wiley and Sons
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527845347Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 599728-1001 | TA418.9 .N35 | Searching... | Searching... |
