Cover image for RF and microwave engineering : fundamentals of wireless communications
Title:
RF and microwave engineering : fundamentals of wireless communications
Author:
Gustrau, Frank, author.
ISBN:
9781394283491

9781394283477

9781394283484
Edition:
Fourth edition.
Physical Description:
1 online resource
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Symbols and Abbreviations -- About the Companion Website -- 1 Introduction -- 1.1 Radiofrequency and Microwave Applications -- 1.2 Frequency Bands -- 1.3 Physical Phenomena in the High Frequency Domain -- 1.3.1 Electrically Short Transmission Line -- 1.3.2 Transmission Line with Length Greater Than One-Tenth of Wavelength -- 1.3.3 Radiation and Antennas -- 1.4 Outline of the Following Chapters -- 1.4 References -- 2 Electromagnetic Fields and Waves -- 2.1 Physical and Mathematical Basics -- 2.1.1 Electrostatic Fields -- 2.1.1.1 Electric Field Strength and Voltage -- 2.1.1.2 Polarization and Relative Permittivity -- 2.1.1.3 Polarization and Time-varying Fields -- 2.1.1.4 Electric Flux Density -- 2.1.1.5 Electric Energy and Capacitance -- 2.1.2 Steady Electric Current and Magnetic Fields -- 2.1.2.1 Current Density, Power Density, and Resistance -- 2.1.2.2 Magnetic Fields and Vector Potential -- 2.1.2.3 Magnetic Energy and Inductance -- 2.1.2.4 Lorentz Force -- 2.1.3 Differential Vector Operations -- 2.1.3.1 Divergence -- 2.1.3.2 Curl -- 2.2 Maxwell's Equations -- 2.2.1 Differential Form in the Time Domain -- 2.2.2 Differential Form for Harmonic Time Dependence -- 2.2.3 Integral Form -- 2.2.4 Constitutive Relations and Material Properties -- 2.2.5 Boundary Conditions -- 2.3 Classification of Electromagnetic Problems -- 2.3.1 Static Fields -- 2.3.2 Quasi-Static Fields -- 2.3.3 Coupled Electromagnetic Fields -- 2.4 Skin Effect -- 2.5 Electromagnetic Waves -- 2.5.1 Wave Equation and Plane Waves -- 2.5.2 Polarization of Waves -- 2.5.2.1 Linear Polarization -- 2.5.2.2 Circular Polarization -- 2.5.2.3 Elliptical Polarization -- 2.5.3 Reflection and Refraction -- 2.5.3.1 Normal Incidence -- 2.5.3.2 Oblique Incidence -- 2.5.4 Spherical Waves -- 2.6 Summary -- 2.7 Problems -- 2.7 References.

2.7 Further Readings -- 3 Transmission Line Theory and Transient Signals on Lines -- 3.1 Transmission Line Theory -- 3.1.1 Equivalent Circuit of a Line Segment -- 3.1.2 Telegrapher's Equation -- 3.1.3 Voltage and Current Waves on Transmission Lines -- 3.1.4 Load-Terminated Transmission Line -- 3.1.5 Input Impedance -- 3.1.6 Lossless Transmission Lines -- 3.1.7 Low-loss Transmission Lines -- 3.1.8 Lossless Transmission Line with Different Terminations -- 3.1.8.1 Matched Load -- 3.1.8.2 Short-Circuited Termination -- 3.1.8.3 Open-Circuited Termination -- 3.1.8.4 Arbitrary Line Termination -- 3.1.9 Impedance Transformation with Lossless Lines -- 3.1.9.1 Quarter-Wave Transformer -- 3.1.9.2 Half-Wave Transformer -- 3.1.10 Reflection Coefficient -- 3.1.11 Smith Chart -- 3.2 Transient Signals on Transmission Lines -- 3.2.1 Step Function -- 3.2.1.1 Matched Source and Matched Load -- 3.2.1.2 Matched Source and Mismatched Resistive Load -- 3.2.1.3 Matched Source and Reactive Load -- 3.2.1.4 Mismatched Source and Load -- 3.2.2 Rectangular Function -- 3.3 Eye Diagram -- 3.4 Summary -- 3.5 Problems -- 3.5 References -- 3.5 Further Readings -- 4 Transmission Lines and Waveguides -- 4.1 Overview -- 4.2 Coaxial Line -- 4.2.1 Specific Inductance and Characteristic Line Impedance -- 4.2.2 Attenuation of Low-Loss Transmission Lines -- 4.2.2.1 Conductor Losses -- 4.2.2.2 Dielectric Losses -- 4.2.3 Technical Frequency Range -- 4.2.4 Areas of Application -- 4.3 Two-Wire Line -- 4.3.1 Characteristic Line Impedance -- 4.3.2 Areas of Application -- 4.4 Microstrip Line -- 4.4.1 Characteristic Line Impedance and Effective Permittivity -- 4.4.2 Dispersion and Technical Frequency Range -- 4.4.3 Areas of Application -- 4.5 Stripline -- 4.5.1 Characteristic Line Impedance -- 4.5.2 Technical Frequency Range -- 4.5.3 Areas of Application -- 4.6 Rectangular Waveguide.

4.6.1 General Considerations -- 4.6.2 Dominant Mode -- 4.6.3 Higher Order Modes -- 4.6.4 Areas of Application -- 4.6.5 Excitation of Waveguide Modes -- 4.6.6 Cavity Resonators -- 4.7 Substrate-Integrated Waveguide (SIW) -- 4.7.1 Geometrical Structure and Electrical Characteristics -- 4.7.2 Microstrip-to-SIW Transition -- 4.8 Three-Conductor Transmission Line -- 4.8.1 Even and Odd Modes -- 4.8.2 Characteristic Line Impedances and Propagation Constants -- 4.8.3 Line Termination for Even and Odd Modes -- 4.9 Problems -- 4.9 References -- 5 Scattering Parameters -- 5.1 Multi-Port Network Representations -- 5.2 Normalized Power Waves -- 5.3 Scattering Parameters and Power -- 5.4 S-Parameter Representation of Network Properties -- 5.4.1 Matching -- 5.4.2 Complex Conjugate Matching -- 5.4.3 Reciprocity -- 5.4.4 Symmetry -- 5.4.5 Passive and Lossless Circuits -- 5.4.6 Unilateral Circuits -- 5.4.7 Specific Characteristics of Three-Port Networks -- 5.5 Calculation of S-Parameters -- 5.5.1 Reflection Coefficients -- 5.5.2 Transmission Coefficients -- 5.5.3 Renormalization -- 5.6 Signal Flow Method -- 5.6.1 Source -- 5.6.2 One-port Network/Load Termination -- 5.6.3 Two-port Network -- 5.6.4 Three-port Network -- 5.6.5 Four-port Network -- 5.7 S-Parameter Measurement -- 5.8 Problems -- 5.8 References -- 5.8 Further Readings -- 6 RF Components and Circuits -- 6.1 Equivalent Circuits of Concentrated Passive Components -- 6.1.1 Resistor -- 6.1.2 Capacitor -- 6.1.3 Inductor -- 6.2 Transmission Line Resonator -- 6.2.1 Half-Wave Resonator -- 6.2.2 Quarter-Wave Resonator -- 6.3 Impedance Matching -- 6.3.1 LC-Networks -- 6.3.2 Matching Using Distributed Elements -- 6.3.2.1 Quarter-Wave Transformer -- 6.3.2.2 Stub Line and Butterfly Stubs -- 6.4 LC-Filter -- 6.4.1 Classical LC-Filter Design -- 6.4.2 Butterworth Filter -- 6.4.2.1 Low-pass Filter -- 6.4.2.2 High-pass Filter.

6.4.2.3 Band-pass Filter -- 6.5 Transmission Line Filter -- 6.5.1 Edge-Coupled Line Filters -- 6.5.2 Hairpin Filter -- 6.5.3 Stepped Impedance Filter -- 6.5.4 Parasitic Box Resonance -- 6.5.5 Waveguide Filter -- 6.6 Circulator -- 6.7 Power Divider -- 6.7.1 Wilkinson Power Divider -- 6.7.2 Unequal Split Power Divider -- 6.8 Branchline Coupler -- 6.8.1 Conventional 3 dB Coupler -- 6.8.2 Unequal Split Branchline Coupler -- 6.9 Rat Race Coupler -- 6.10 Directional Coupler -- 6.11 Balanced-to-Unbalanced Circuits -- 6.12 Electronic Circuits -- 6.12.1 Mixers -- 6.12.2 Amplifiers and Oscillators -- 6.13 RF Design Software -- 6.13.1 RF Circuit Simulators -- 6.13.2 Three-Dimensional Electromagnetic Simulators -- 6.14 Problems -- 6.14 References -- 7 Antennas -- 7.1 Fundamental Parameters -- 7.1.1 Antennas as Wave-Type Converters -- 7.1.2 Nearfield and Farfield -- 7.1.3 Isotropic Radiator -- 7.1.4 Radiation Pattern and Related Parameters -- 7.1.5 Impedance Matching and Bandwidth -- 7.2 Standard Types of Antennas -- 7.3 Mathematical Treatment of the Hertzian Dipole -- 7.4 Wire Antennas -- 7.4.1 Half-Wave Dipole -- 7.4.2 Monopole -- 7.4.3 Concepts for Reducing Antenna Height -- 7.5 Slot Antennas -- 7.6 Aperture Radiators and Horn Antennas -- 7.6.1 Aperture Radiators -- 7.6.2 Horn Antennas -- 7.7 Planar Antennas -- 7.7.1 Rectangular Patch Antenna -- 7.7.1.1 Radiation of a Single Patch Element -- 7.7.1.2 Resonance Frequency and Patch Dimensions -- 7.7.1.3 Feeding of Patch Elements -- 7.7.2 Circularly Polarizing Patch Antennas -- 7.7.3 Planar Dipole and Inverted-F Antenna -- 7.8 Antenna Arrays -- 7.8.1 Single Element Radiation Pattern and Array Factor -- 7.8.2 Phased Array Antennas -- 7.8.3 Beam Forming -- 7.9 Modern Antenna Concepts -- 7.10 Problems -- 7.10 References -- 8 Radio Wave Propagation -- 8.1 Propagation Mechanisms -- 8.1.1 Reflection and Refraction.

8.1.2 Absorption -- 8.1.3 Diffraction -- 8.1.4 Scattering -- 8.2 Basic Propagation Models -- 8.2.1 Free Space Loss -- 8.2.2 Attenuation of Air -- 8.2.3 Reflection at Scattering Targets (Radar Cross-Section) -- 8.2.4 Doppler Effect -- 8.2.5 Plane Earth Loss -- 8.2.6 Point-to-Point Radio Links -- 8.2.7 Layered Media -- 8.3 Path Loss Models -- 8.3.1 Multipath Environment -- 8.3.2 Clutter Factor Model -- 8.3.3 Okumura-Hata Model -- 8.3.4 Physical Models and Numerical Methods -- 8.4 Summary -- 8.5 Problems -- 8.5 References -- A Mathematical Relations and Resonant Circuits -- A.1 Coordinate Systems -- A.1.1 Cartesian Coordinate System -- A.1.2 Cylindrical Coordinate System -- A.1.3 Spherical Coordinate System -- A.2 Characteristics of Resonant Circuits -- A.2.1 Series Resonant Circuit -- A.2.1.1 Impedance Behavior of the Series Resonant Circuit in the Frequency Domain -- A.2.1.2 Reflection Coefficient of a Matched Series Resonant Circuit -- A.2.1.3 Behavior of the Series Resonant Circuit in the Time Domain -- A.2.2 Parallel Resonant Circuit -- A.2.2.1 Impedance Behavior of the Parallel Resonant Circuit in the Frequency Domain -- A.2.2.2 Reflection Coefficient of a Matched Parallel Resonant Circuit -- A.2.2.3 Behavior of the Parallel Resonant Circuit in the Time Domain -- A.3 Logarithmic Representation -- A.3.1 Dimensionless Quantities -- A.3.2 Relative and Absolute Ratios -- A.3.3 Link Budget -- Index -- EULA.
Abstract:
A comprehensive guide to the fundamentals of radio frequency (RF), microwave engineering, and the physical aspects of wireless communications. Combining physical-technical fundamentals with numerical simulations, RF and Microwave Engineering presents a wide range of RF topics with emphasis on physical aspects such as electromagnetic (EM) and voltage waves, transmission lines, passive circuits, and antennas. The text discusses the propagation of waves and their representation, effects, and utilization in passive circuits and antenna structures, incorporates various design examples using circuit and EM simulation software, and gives examples of modern RF tools to show how methods can be applied productively in RF engineering practice. This revised edition includes new chapters on monostatic and bistatic radar cross sections (RCS), horn antennas, 5G mobile communications, substrate-integrated-waveguides (SIW), slot antennas, characteristics of resonators, and other topics. A list of practice problems is provided at the end of each chapter and a companion website hosts solutions to the problem sets. Written by a highly qualified professor this is the English language translation of the German original. RF and Microwave Engineering includes: Transmission line theory and transient signals on lines, covering characteristic line impedances, voltage waves, idealized lossless lines and cables with low losses, impedance transformation, reflection coefficient, and Smith chart diagram Waveguides, covering coaxial lines, including weak losses, parallel wire lines, microstrip lines, rectangular waveguides, substrate-integrated-waveguides, and three-wire systems Scattering parameters, covering multiport equations in matrix form, special network properties of circuits, and the signal flow method High-frequency components and circuits, covering line filters, couplers, power dividers, and matching circuits Antenna concepts and radio wave propagation in complex environments RF and Microwave Engineering is an essential text for undergraduate and graduate students in electrical engineering courses including microwave engineering, basic circuit theory, electromagnetic fields, and wireless communications as well as early-stage RF practitioners and engineers.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 599739-1001 TK6560 .G87 2025
Searching...

On Order