Cover image for Artificial intelligence in remote sensing for disaster management
Title:
Artificial intelligence in remote sensing for disaster management
Author:
Dahiya, Neelam, editor.
ISBN:
9781394287222

9781394287215

9781394287208
Physical Description:
1 online resource : illustrations
General Note:
Includes index.
Contents:
Preface xvii -- 1 Introduction to Natural Hazards, Challenges, and Managing Strategies 1 Puninder Kaur, Taruna Sharma, Jaswinder Singh and Neelam Dahiya -- 1.1 Introduction 1 -- 1.2 Terminology Used 3 -- 1.2.1 Hazard 3 -- 1.2.2 Mitigation 3 -- 1.2.3 Vulnerability 4 -- 1.2.4 Disaster 4 -- 1.2.5 Risk 4 -- 1.3 Classification of Natural Hazards 5 -- 1.3.1 Biological Natural Hazards 5 -- 1.3.2 Geological Hazards 6 -- 1.3.3 Hydrological Hazards 6 -- 1.3.4 Meteorological Hazards 6 -- 1.4 Challenges and Risks of Natural Hazards 7 -- 1.4.1 Loss of Life 7 -- 1.4.2 Property Damage and Economic Losses 8 -- 1.4.3 Disruption of Critical Infrastructure 8 -- 1.4.4 Health Risks and Disease Outbreaks 8 -- 1.4.5 Environmental Degradation 9 -- 1.4.6 Social and Economic Disparities 9 -- 1.4.7 Psychosocial Impacts 9 -- 1.5 Strategies to Prevent Natural Hazards 10 -- 1.5.1 Planning and Regulation for Reducing Risk on Land 10 -- 1.5.1.1 Zoning Regulations 10 -- 1.5.1.2 Building Codes and Standards 10 -- 1.5.1.3 Setback Requirements 11 -- 1.5.1.4 Erosion Control Measures 11 -- 1.5.1.5 Floodplain Management 11 -- 1.5.2 Environmental Conservation and Restoration 11 -- 1.5.2.1 Protecting Natural Ecosystems 11 -- 1.5.2.2 Restoring Degraded Ecosystems 12 -- 1.5.2.3 Floodplain Management 12 -- 1.5.2.4 Coastal Protection 12 -- 1.5.2.5 Sustainable Land Management 12 -- 1.5.3 Early Warning Systems and Preparedness 13 -- 1.5.3.1 Hazard Monitoring and Forecasting 13 -- 1.5.3.2 Risk Assessment and Planning 13 -- 1.5.4 Education and Awareness 13 -- 1.5.4.1 Understanding Hazards and Risks 13 -- 1.5.4.2 Promoting Risk Reduction Measures 14 -- 1.5.4.3 School Curriculum Integration 14 -- 1.5.5 Climate Change Mitigation 14 -- 1.5.5.1 Reducing Greenhouse Gas Emissions 14 -- 1.5.5.2 Promoting Renewable Energy 15 -- 1.5.5.3 Enhancing Energy Efficiency 15 -- 1.6 Role of Remote Sensing Device to Prevent Natural Disasters 15 -- 1.6.1 Hazard Detection and Monitoring 15 -- 1.6.2 Early Warning Systems 16 -- 1.6.3 Risk Assessment and Vulnerability Mapping 16 -- 1.6.4 Environmental Monitoring 16 -- 1.6.5 Mapping and Damage Assessment 16 -- 1.7 Conclusion 17 -- Acknowledgments 17 -- References 17 -- 2 Role of Remote Sensing for Emergency Response and Disaster Rehabilitation 21 Mochamad Irwan Hariyono and Aptu Andy Kurniawan -- 2.1 Introduction 21 -- 2.2 Method 25 -- 2.3 Disaster Management 25 -- 2.4 Result and Discussion 26 -- 2.4.1 Floods 26 -- 2.4.2 Earthquakes 28 -- 2.4.3 Drought 29 -- 2.4.4 Landslides 29 -- 2.4.5 Land/Forest Fire 30 -- 2.4.6 Volcanic Eruption 31 -- 2.5 Conclusion 32 -- References 33 -- 3 Fundamentals of Disaster Management Using Remote Sensing 35 Garima and Narayan Vyas -- 3.1 Introduction 35 -- 3.2 Importance of Remote Sensing in Disaster Management 36 -- 3.2.1 Role in Emergency Response 37 -- 3.2.2 Impact on Disaster Rehabilitation 38 -- 3.2.3 Remote Sensing Taxonomy 39 -- 3.3 Remote Sensing Applications in Emergency Response 40 -- 3.3.1 Damage Assessment 40 -- 3.3.1.1 Techniques and Methods 41 -- 3.3.1.2 Integration with Other Data Sources 42 -- 3.3.1.3 Feature Extraction from Pre- and Post- Disaster Imagery 43 -- 3.4 Acquisition of Disaster Features 45 -- 3.4.1 Acquisition of Tsunami Features with Remote Sensing 45 -- 3.4.2 Acquisition of Earthquake Features with Remote Sensing 48 -- 3.4.3 Acquisition of Wildfire Features with Remote Sensing 50 -- Conclusion 55 -- References 55 -- 4 Remote Sensing for Monitoring of Disaster-Prone Region 59 Navdeep Singh Sodhi and Sofia Singla -- 4.1 Introduction 60 -- 4.2 Related Existing Work 63 -- 4.3 Comparison Table 68 -- 4.4 Graphical Analysis 72 -- 4.5 Conclusion and Future Scope 74 -- Acknowledgments 74 -- References 75 -- 5 Artificial Intelligence Tools in Disaster Risk Reduction and Emergency Management 79 Rupinder Singh, Manjinder Singh and Jaswinder Singh -- 5.1 Introduction 80 -- 5.1.1 Role of AI Tools and Technologies 80 -- 5.1.2 Purpose and Objectives of the Research Paper 82 -- 5.2 AI Tools and Technologies in Disaster Risk Reduction 83 -- 5.3 Ethical and Social Implications of Using AI Tools in Disaster Management 91 -- 5.4 Impact and Effectiveness of AI Tools and Technologies 92 -- 5.5 AI for Dismantling Difficulties in Disaster Management 94 -- 5.6 Future Directions and Recommendations 95 -- 5.7 Conclusion 95 -- Acknowledgments 96 -- Funding 96 -- References 96 -- 6 AI Tools and Technologies in Disaster Risk Reduction and Management 99 Alisha Sinha and Laxmi Kant Sharma -- 6.1 Introduction 100 -- 6.2 AI Tools in Different Phases of Disaster Management 101 -- 6.2.1 Before Disaster 101 -- 6.2.2 During Disaster 102 -- 6.2.3 After Disaster 102 -- 6.3 Use of Geospatial Technologies and AI in Disaster Management 103 -- 6.4 Future Challenges and Goals with AI 116 -- 6.5 Conclusions 116 -- Acknowledgment 117 -- References 117 -- 7 AI-Based Landslide Susceptibility Evaluation 125 Amanpreet Singh and Payal Kaushal -- 7.1 Introduction 126 -- 7.2 Principle of Support Vector Machines (SVM) 128 -- 7.3 Conclusion 132 -- Acknowledgments 132 -- References 133 -- 8 Navigating Risk: A Comprehensive Study of Landslide Susceptibility Mapping and Hazard Assessment 139 Gaurav Kumar Saini and Inderdeep Kaur -- 8.1 Introduction 140 -- 8.1.1 Challenges in Factor Selection and Weighting 141 -- 8.1.2 Combination of Subjective and Objective Approaches 141 -- 8.2 Factors Responsible for Landslides 141 -- 8.2.1 External 141 -- 8.2.2 Internal 142 -- 8.3 Types of Landslides 143 -- 8.4 Landslide Detection Techniques 144 -- 8.5 Landslide Monitoring Techniques 146 -- 8.6 Use of Machine Learning in Landslide Mapping 147 -- 8.7 Use of Deep Learning in Landslide Mapping 148 -- 8.8 Use of Ensemble Techniques 148 -- 8.9 Limitations of Existing Algorithms 149 -- 8.10 Dataset Used 149 -- 8.11 Model Architecture 153 -- 8.12 Results and Discussion 154 -- Acknowledgment 157 -- References 158 -- 9 Application of Geospatial Technology for Disaster Risk Reduction Using Machine Learning Algorithm and OpenStreetMap in Batticaloa District, Eastern Province, Sri Lanka 161 Zahir I.L.M., Suthakaran S., Iyoob A.L., Nuskiya M.H.F. and Fowzul Ameer M.L.

-- 9.1 Introduction 162 -- 9.1.1 Geospatial Technology in DRR 163 -- 9.1.2 MLAs in DRR 164 -- 9.1.3 OSM in DRR 164 -- 9.1.4 Integrated Approach of Geospatial Technology, Machine Learning, and OSM 165 -- 9.2 Significance of the Study 165 -- 9.3 Objectives 167 -- 9.4 Methodology 167 -- 9.4.1 Study Area 167 -- 9.4.2 Data Collection 169 -- 9.4.2.1 MLAs for DRR 169 -- 9.4.2.2 Integration with OSM 171 -- 9.5 Results and Discussion 174 -- 9.6 Conclusion and Recommendations 179 -- References 180 -- 10 Landslide Displacement Forecasting With AI Models 185 Sangeetha Annam -- 10.1 Introduction 186 -- 10.1.1 Technology Classifications for Remote Sensing 187 -- 10.1.2 Architecture of Risk Management 189 -- 10.2 Artificial Intelligence-Based Forecasting of Landslide Displacement 191 -- 10.3 Performance Metrics 195 -- 10.4 Limitations in Assessing the AI Models for Landslide Displacement Prediction 196 -- 10.5 Technologies Integrated with AI Models 197 -- 10.6 Conclusion 198 -- References 199 -- 11 Estimation of Snow Avalanche Hazardous Zones With AI Models 201 Rajinder Kaur, Sartajvir Singh and Ganesh Kumar Sethi -- 11.1 Introduction 202 -- 11.2 Study Site and Data 203 -- 11.3 Methodology 204 -- 11.4 Results and Discussion 208 -- 11.5 Conclusion 209 -- References 210 -- 12 Predicting and Understanding the Snow Avalanche Event 213 Nitin Arora and Sakshi -- 12.1 Introduction 214 -- 12.2 Snow Avalanche 214 -- 12.2.1 Types of Snow Avalanche 216 -- 12.2.1.1 Sluff Avalanche 216 -- 12.2.1.2 Slab Avalanche 216 -- 12.2.2 Basic Reason Behind Snow Avalanche 217 -- 12.2.3 Role of Remote Sensing in Snow Avalanche Prediction 218 -- 12.3 Contributory Factors 219 -- 12.3.1 Terrain 220 -- 12.3.2 Precipitation 220 -- 12.3.2.1 Snow Accumulation 220 -- 12.3.2.2 Formation of Weak Layers 220 -- 12.3.2.3 Load and Stress Increases 220 -- 12.3.2.4 Rain-on-Snow Effect 220 -- 12.3.3 Wind Temperature 221 -- 12.3.4 Snowpack Stratigraphy 221 -- 12.4 Remote Sensing and Avalanche Prediction 221 -- 12.4.1 Basic Principle Behind Radar-Based Remote Sensing 222 -- 12.4.2 Need for Remote Sensing 223 -- 12.5 Methodology 223 -- 12.5 Conclusion and Future Scope 225 -- References 225 -- 13 A Systematic Review on Challenges and Opportunities in Snow Avalanche Risk Assessment and Analysis 229 Apoorva Sharma, Bhavneet Kaur and Sartajvir Singh -- 13.1 Introduction 230 -- 13.2 Advanced Tools for Snow Avalanche Monitoring System 233 -- 13.3 Snow Avalanche Risk Assessment and Analysis 234 -- 13.4 Challenges in Snow Avalanche Risk Assessment and Analysis 237 -- 13.5 Opportunities in Snow Avalanche Risk Assessment and Analysis 237 -- 13.6 Summary 239 -- References 239 -- 14 AI-Based Modeling of GLOF Process and Its Impact 243 Jaswinder Singh, Rajwinder Kaur, Puninder Kaur and Rupinder Singh -- 14.1 Introduction 244 -- 14.1.1 The Andes 245 -- 14.1.2 High Mountain Asia (HMA) 245 ...
Abstract:
Invest in Artificial Intelligence in Remote Sensing for Disaster Management to gain invaluable insights into cutting-edge AI technologies and their transformative role in effectively monitoring and managing natural disasters. Artificial Intelligence in Remote Sensing for Disaster Management examines the involvement of advanced tools and technologies such as Artificial Intelligence in disaster management with remote sensing. Remote sensing offers cost-effective, quick assessments and responses to natural disasters. In the past few years, many advances have been made in the monitoring and mapping of natural disasters with the integration of AI in remote sensing. This volume focuses on AI-driven observations of various natural disasters including landslides, snow avalanches, flash floods, glacial lake outburst floods, and earthquakes. There is currently a need for sustainable development, near real-time monitoring, forecasting, prediction, and management of natural resources, flash floods, sea-ice melt, cyclones, forestry, and climate changes. This book will provide essential guidance regarding AI-driven algorithms specifically developed for disaster management to meet the requirements of emerging applications.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 599953-1001 HD49 .A78 2025
Searching...

On Order