
Title:
A hardware-in-loop digital twin approach for intelligent optimization of municipal solid waste incineration : AI and its application to complex industrial processes
Author:
Tang, Jian, author.
ISBN:
9781394354047
9781394354023
9781394354030
Physical Description:
1 online resource
Contents:
List of Figures xvii -- List of Tables xxix -- About the Authors xxxiii -- Preface xxxv -- Abbreviations xxxvii -- Symbol Meaning xliii -- 1 Introduction 1 -- 1.1 Municipal Solid Waste Incineration (MSWI) Process and Optimal Control 1 -- 1.1.1 Description of MSWI Process 1 -- 1.1.2 Control Mode in Developed and Developing Countries 5 -- 1.1.3 Difficulties in the Implementation of Optimal Control and Application 9 -- 1.1.3.1 Description of Optimal Control for Complex Industrial Process 9 -- 1.1.3.2 Requirements of the MSWI Process in Academic Research and Industrial Applications 13 -- 1.1.3.3 Difficulties of AI Algorithm Research and Validation for MSWI Processes 14 -- 1.1.4 Development of Optimal Control Research Based on Artificial Intelligence (AI) 16 -- 1.2 AI-Based Modeling and Monitoring 17 -- 1.2.1 Numerical Simulation Modeling 17 -- 1.2.1.1 Brief Description of Numerical Simulation for MSWI Processes 17 -- 1.2.1.2 Based on Commercial Software 19 -- 1.2.1.3 Based on Self-developed Software 22 -- 1.2.1.4 Difficulties of Numerical Simulation Modeling 22 -- 1.2.1.5 Digital Twin (DT) Model Construction for MSWI 24 -- 1.2.2 Combustion Process Modeling 26 -- 1.2.2.1 Key Controlled Variables (CVs) Modeling 26 -- 1.2.2.2 Auxiliary Variables (AVs) Modeling 27 -- 1.2.3 Operational Indicators Modeling 28 -- 1.2.3.1 Environmental Indicators (EIs) Modeling 28 -- 1.2.3.2 Product Indicators (PIs) Modeling 29 -- 1.2.3.3 Economic Indicators Modeling 30 -- 1.2.4 Flame Status Monitoring 30 -- 1.2.5 Operational Abnormal Monitoring 31 -- 1.3 Control and Optimization Based on AI and DT 32 -- 1.3.1 Control in On-site 32 -- 1.3.1.1 Research of Automatic Combustion Control (ACC) System 32 -- 1.3.1.2 Research of Non-ACC System 33 -- 1.3.2 Control in Off-site 33 -- 1.3.2.1 Single Input Single Output (SISO) Control 33 -- 1.3.2.2 Multiple Input Multiple Output (MIMO) Control 34 -- 1.3.3 Optimization of Pollution Emission 35 -- 1.4 Hardware-in-Loop DT for MSWI Processes 36 -- 1.4.1 Brief Description of Simulation Platform for Industrial Process 36 -- 1.4.2 Simulation Platform in Terms of Real/Virtual Perspective 37 -- 1.4.2.1 “Real–Real” Simulation Platform 37 -- 1.4.2.2 “Real–Virtual” Simulation Platform 38 -- 1.4.2.3 “Virtual–Real” Simulation Platform 39 -- 1.4.2.4 “Virtual–Virtual” Simulation Platform 40 -- 1.4.3 Difficulties of Simulation Platform for MSWI Process 41 -- 1.5 Book’s Structure 42 -- Part I 42 -- Part II 45 -- Part III 47 -- References 48 -- Part I Modeling and Monitoring Based on AI 67 -- 2 Numerical Simulation and Modeling Analysis on Whole Industrial Process by Coupling Multiple Software 69 -- 2.1 Simulated Plant and Simulation Modeling 69 -- 2.1.1 Simulated MSWI Plant 69 -- 2.1.1.1 Process Flow Description of the Simulated MSWI Plant 70 -- 2.1.1.2 Slag, Fly Ash, and Leachate Treatment of the Simulated MSWI Plant 71 -- 2.1.2 Simulation and Modeling Requirements 72 -- 2.1.3 MSWI Process Description for Numerical Simulation 74 -- 2.1.3.1 Mechanism Oriented Process Description 74 -- 2.1.3.2 Mechanism Model Description 77 -- 2.1.4 Numerical Simulation and Modeling Analysis Framework 91 -- 2.2 Modeling Strategy with Virtual Data-driven 92 -- 2.3 Modeling Implementation for Whole Process 94 -- 2.3.1 Multi-Software-Coupled Whole-Process Numerical Simulation Module Under Benchmark Conditions 94 -- 2.3.1.1 Solid-Phase Combustion Simulation on the Grate Based on FLIC 94 -- 2.3.1.2 Gas-Phase Combustion in the Furnace Based on Fluent 96 -- 2.3.1.3 Non-grate Solid-Phase Combustion Simulation in MSWI Process Based on Aspen Plus 97 -- 2.3.2 Simulation Mechanism Data Acquisition Module Under Multiple Operating Conditions 100 -- 2.3.3 Exhaust Emission Model Construction Module Based on Mimo-lrdt 101 -- 2.3.4 Exhaust Emissions Analysis Module Based on Single/Dual Factors 103 -- 2.4 Numerical Simulation and Modeling Results 103 -- 2.4.1 Benchmark Condition Simulation Results 103 -- 2.4.1.1 Data Description 103 -- 2.4.1.2 Results of Solid MSW Combustion on the Grate 104 -- 2.4.1.3 Results of Gas-Phase Combustion in the Furnace 106 -- 2.4.1.4 Results of Non-grate Solid-Phase Combustion in MSWI Process 107 -- 2.4.1.5 Comparison with the Actual Data 108 -- 2.4.2 Results and Analysis of Multiple Operating Conditions 109 -- 2.4.2.1 Typical Non-benchmark Condition Description 109 -- 2.4.2.2 Typical Solid-Phase MSW Combustion Results Based on FLIC 109 -- 2.4.2.3 Typical Gas-Phase Combustion Results Based on Fluent 110 -- 2.4.2.4 Typical Non-grate Solid-Phase Combustion Results Based on Aspen Plus 116 -- 2.4.2.5 Multiple Operating Conditions Results Based on Orthogonal Experimental Design 118 -- 2.4.3 Construction Results of Exhaust Emission Model Based on Mimo-lrdt 118 -- 2.4.4 Exhaust Emissions Cause and Effect Analysis Based on Single/Dual Factor 120 -- 2.4.5 Discussion 124 -- 2.5 Conclusion 124 -- References 125 -- 3 Conventional Pollutant Deep Modeling Using Virtual Data and Real Data Hybrid-Driven 129 -- 3.1 Virtual–Real Data-Driven Conventional Pollutant Modeling 129 -- 3.1.1 Motivation 129 -- 3.1.2 CO Description 130 -- 3.1.3 CO Prediction Strategy 131 -- 3.2 Real Data Hybrid-Driven Modeling Implementation 133 -- 3.2.1 Offline Training Verification Phase 133 -- 3.2.1.1 Multi-condition Virtual Mechanism Data Generation Module 133 -- 3.2.1.2 Mechanism Mapping Model Module Based on LRDT 135 -- 3.2.1.3 Real Data-Driven Model Module Based on LSTM 137 -- 3.2.1.4 Heterogeneous Ensemble Module 140 -- 3.2.2 Online Testing Verification Phase 142 -- 3.2.2.1 Mechanism Mapping Model Module Based on LRDT 142 -- 3.2.2.2 Real Data-Driven Model Module Based on LSTM 142 -- 3.2.2.3 Heterogeneous Ensemble Module 142 -- 3.3 Deep Modeling Results and Discussion 142 -- 3.3.1 Data Description 142 -- 3.3.2 Evaluation Indexes 143 -- 3.3.3 Modeling Results and Discussion 143 -- 3.3.3.1 Offline Training Verification Phase Results 143 -- 3.3.3.2 Online Testing Verification Phase Results 152 -- 3.3.4 Discussion on Model Hyperparameter 152 -- 3.4 Conclusion 157 -- References 160 -- 4 Trace Pollutant Modeling Using the Selective Ensemble Algorithm 163 -- 4.1 Selective Ensemble Modeling Strategy 163 -- 4.1.1 Motivation 163 -- 4.1.2 DXN Generation Description of MSWI Process 164 -- 4.1.3 DXN Soft Sensing Strategy 166 -- 4.2 Trace Pollutant Modeling Implementation 168 -- 4.2.1 Ensembled Submodel Building Module 168 -- 4.2.1.1 BT Candidate Submodel Construction and Prediction Submodule 168 -- 4.2.1.2 Candidate Submodel Bayesian Information Acquisition Submodule 170 -- 4.2.1.3 Ensembled Submodel Selection Submodule 174 -- 4.2.2 Ensembled Submodel Weighted Fusion Module 175 -- 4.3 Data-Driven Ensemble Modeling Results and Discussion 176 -- 4.3.1 Data Description 176 -- 4.3.2 Evaluation Indicators 176 -- 4.3.3 Benchmark Data Verification 180 -- 4.3.3.1 Ensembled Submodel Construction Results 181 -- 4.3.3.2 Weighted Prediction Results of Ensembled Submodel 183 -- 4.3.3.3 Comparison of Experimental Results 184 -- 4.3.4 Industrial Data Validation 186 -- 4.3.4.1 Ensembled Submodel Construction Results 187 -- 4.3.4.2 Weighted Prediction Results of the Ensembled Submodel 189 -- 4.3.4.3 Comparison of Experimental Results 189 -- 4.3.5 Hyperparameter Analysis for Different Datasets 196 -- 4.4 Conclusion 201 -- References 201 -- 5 Trace Pollutant Modeling Based on Semi-supervised Random Forest Optimization 205 -- 5.1 Data-Driven Trace Pollutant Semi-supervised Random Forest Optimization Modeling Strategy 205 -- 5.1.1 Semi-supervised Random Forest Optimization Modeling 205 -- 5.1.2 Semi-supervised Regression Modeling and Optimization Research 206 -- 5.1.3 Dioxin (DXN) Semi-supervised Soft Sensing Strategy 209 -- 5.2 Data-Driven Trace Pollutant Modeling Implementation 212 -- 5.2.1 Parameter Coding Design Module for Hybrid Optimization 212 -- 5.2.2 Initialization and Decoding Module of the Hybrid Parameter 213 -- 5.2.3 Fitness Evaluation Module for Multi-objective 215 -- 5.2.3.1 Train the Random Forest (RF) Model Based on the Labeled Samples 215 -- 5.2.3.2 Get the Pseudo-labeled Samples 217 -- 5.2.3.3 Select the Pseudo-labeled Samples 217 -- 5.2.3.4 Get the Mixed Sample Set 218 -- 5.2.3.5 Train the RF Model Based on the Mixed Sample set 218 -- 5.2.3.6 Evaluate the Fitness and Optimal Archive 218 -- 5.2.4 Iterative Optimization and Optimal Solution
Acquisition Module 218 -- 5.2.4.1 Optimization Termination and Update 219 -- 5.2.4.2 Optimal Solution Acquisition Module Based on the Pareto Solution Set 220 -- 5.2.5 RF Model Construction Module Based on the Mixed Sample Set 220 -- 5.3 Experimental Verification 221 -- 5.3.1 Benchmark Dataset 221 -- 5.3.1.1 Data Description 221 -- 5.3.1.2 Experimental Results 221 -- 5.3.1.3 Comparison with Other Methods 225 -- 5.3.2 DXN Dataset 227 -- 5.3.2.1 Data Description 227 -- 5.3.2.2 Experimental Results 227 -- 5.3.2.3 Comparison with Other Methods 231 -- 5.3.3 Parameter Sensitivity Analysis 231 -- 5.4 Conclusion 238 -- References 239 -- 6 Combustion State Identificatio ...
Abstract:
An expert discussion of intelligent optimization control in complex industrial processes In A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration: AI and Its Application to Complex Industrial Processes, a team of distinguished researchers delivers an innovative new approach to integrating virtual mechanism data generated through coupled numerical simulation and orthogonal experimental design with real historical data. The book explains how to create a heterogenous ensemble prediction model for carbon monoxide emissions in municipal solid waste incineration (MSWI) processes. The authors focus on intelligent optimization control of MSWI processes based on hardware-in-loop DT platforms. They demonstrate AI-driven modeling, control, optimization algorithms in real-world applications, including virtual-real data hybrid-driven deep modeling and intelligent optimal controls based on multiple objectives. Additional topics include: A thorough introduction to numerical simulation modeling of whole industrial processes Comprehensive explorations of the design, implementation, and validation of hardware-in-loop digital twin platforms Practical discussions of AI-driven modeling, control, and optimization Fulsome descriptions of the skills required to address challenges posed by complex industrial processes Perfect for environmental engineers and researchers, A Hardware-in-Loop Digital Twin Approach for Intelligent Optimization of Municipal Solid Waste Incineration will also benefit MSWI plant operators and managers, as well as AI and machine learning researchers and developers of environmental monitoring and control systems.
Local Note:
John Wiley and Sons
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394354047Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 600293-1001 | TD796 .T36 2026 | Searching... | Searching... |
