Cover image for CRISPR and RNAi systems : nanobiotechnology approaches to plant breeding and protection
Title:
CRISPR and RNAi systems : nanobiotechnology approaches to plant breeding and protection
Author:
Abd-Elsalam, Kamel A.
ISBN:
9780128219119
Physical Description:
1 online resource
Series:
Nanobiotechnology for plant protection
Contents:
Front Cover -- CRISPR and RNAi Systems -- Copyright Page -- Contents -- List of contributors -- Series preface -- Preface -- 1 Can CRISPRized crops save the global food supply? -- 1.1 Introduction -- 1.2 Gene editing techniques -- 1.3 RNAi and CRISPR systems for plant breeding and protection: where are we now? -- 1.3.1 Improving yield and quality in crops -- 1.3.2 Biotic and abiotic stress resistance -- 1.3.3 Speed breeding programs in plants -- 1.4 What are future perspectives? -- 1.5 Conclusion -- References -- 2 Targeted genome engineering for insects control -- 2.1 Introduction -- 2.1.1 RNAi in insects -- 2.1.2 Prerequisites for RNAi response -- 2.1.3 Variation in RNAi response -- 2.1.4 ORDER specific RNAi applications -- 2.1.5 Pros and cons of RNAi-mediated insect control strategies -- 2.2 CRISPR/Cas9 -- 2.2.1 CRISPR-Cas9 sex-ratio distortion and sterile insect technique -- 2.2.2 Potential targets for CRISPR system in insects -- 2.3 Conclusion and future prospects -- References -- 3 CRISPR/Cas9 regulations in plant science -- 3.1 Introduction -- 3.2 Ethical concerns for CRISPR-based editing system -- 3.3 Biosafety concerns for genomic manipulated crops -- 3.4 Global regulations of CRISPR edit crops -- 3.4.1 The United States regulation policies for genome edit crops -- 3.4.2 Canada regulation policies for genome edit crops -- 3.4.3 European Union regulation policies for genome edit crops -- 3.4.4 China regulation policies for genome edit crops -- 3.4.5 Pakistan regulation policies for genome edit crops -- 3.4.6 India regulation policies for genome edit crops -- 3.4.7 Australia regulation policies for genome edit crops -- 3.4.8 Japan regulation policies for genome edit crops -- 3.4.9 New Zealand regulation policies for genome edit crops -- 3.4.10 Brazil regulation policies for genome edit crops -- 3.5 Conclusion and future outlook.

3.6 Conflict of interest -- References -- 4 Are CRISPR/Cas9 and RNA interference-based new technologies to relocate crop pesticides? -- 4.1 Introduction -- 4.2 Conventional pesticides: present status and challenges -- 4.3 Advancement in green revolution: the RNAi toolkit -- 4.4 Advantages and disadvantages of RNAi-based methods -- 4.5 Advantages of CRISPR/Cas9-based systems -- 4.6 Conclusions and future prospects -- Acknowledgments -- References -- Further reading -- 5 CRISPR-Cas epigenome editing: improving crop resistance to pathogens -- 5.1 Introduction -- 5.1.1 A brief history of CRISPR/Cas -- 5.1.2 CRISPR/Cas9-based genome editing -- 5.2 Applications of CRISPR/Cas9 -- 5.2.1 Re-engineering Cas9 for genome editing -- 5.2.1.1 Double nicking CRISPR/Cas9 -- 5.2.1.2 CRISPRi (CRISPR interference) -- 5.2.1.3 CRISPRa (CRISPR activation) -- 5.2.1.4 CRISPR I/O (input/output) gene regulation -- 5.2.1.5 CRISPR epigenome editing -- 5.2.1.6 CRISPR base editing -- 5.2.1.7 CRISPR prime editing -- 5.3 CRISPR/Cas12 -- 5.4 CRISPR/Cas13 RNA editing -- 5.5 CRISPR/Cas14 -- 5.6 Delivery of CRISPR/Cas system for (epi)genome editing -- 5.6.1 Virus-induced gene editing and viral delivery for CRISPR/Cas systems -- 5.6.2 Agrobacterium-mediated T-DNA transformation -- 5.6.3 PEG transformation -- 5.6.4 Direct delivery of ribonucleotide protein complexes -- 5.7 Cisgenic, intragenic, transgenic or edited plants -- 5.8 Epigenome editing -- 5.8.1 Targeted epigenetic regulation -- 5.8.2 Crop disease resistance -- 5.8.3 Limitations to epigenome editing -- 5.9 Summary and future directions -- Acknowledgments -- References -- 6 CRISPR/Cas system for the development of disease resistance in horticulture crops -- 6.1 Introduction -- 6.2 Bacterial resistance -- 6.2.1 Citrus canker -- 6.2.2 Fire blight -- 6.3 Fungal resistance -- 6.3.1 Powdery mildew -- 6.3.2 Gray mold -- 6.3.3 Black pod.

6.4 Virus resistance -- 6.4.1 RNA viruses -- 6.4.2 DNA viruses -- 6.5 Concluding remarks -- References -- 7 CRISPR and RNAi technology for crop improvements in the developing countries -- 7.1 Introduction -- 7.2 Conventional breeding for crop improvements -- 7.3 RNAi technology: an overview -- 7.3.1 RNAi technology for crop improvements -- 7.3.1.1 Enhancement in biotic stress tolerance/resistance -- 7.3.1.2 Enhancement in abiotic stress tolerance/resistance -- 7.3.1.3 Engineering of seedless fruits -- 7.3.1.4 Enhancement of nutritional value -- 7.3.1.5 Induction of male sterility/heterosis -- 7.4 CRISPR technology for crop improvements: an overview -- 7.4.1 CRISPR technology for the development of biotic stress resistance -- 7.4.2 CRISPR technology for the development of abiotic stress resistance -- 7.4.3 CRISPR technology for nutritional modifications in crop -- 7.5 Crop improvements: examples from developing countries -- 7.5.1 China -- 7.5.2 India -- 7.5.3 Pakistan -- 7.5.4 Bangladesh -- 7.5.5 Africa -- 7.6 Conclusion and prospects -- References -- 8 RNA interference and CRISPR/Cas9 applications for virus resistance -- 8.1 Introduction -- 8.2 Control of viral diseases using RNA interference approaches -- 8.3 Control of viral diseases using CRISPR/Cas technology -- 8.4 CRISPR/Cas genome editing against DNA viruses -- 8.5 CRISPR/Cas genome editing against RNA viruses -- 8.6 Production of foreign DNA-free virus-resistant plants by CRISPR/Cas -- 8.7 RNA interference versus CRISPR/Cas strategies -- 8.8 Conclusion -- References -- 9 Current trends and recent progress of genetic engineering in genus Phytophthora using CRISPR systems -- 9.1 Introduction -- 9.2 Common diseases of crops caused by Phytophthora -- 9.3 Genome editing approaches -- 9.4 CRISPR-Cas systems for Phytophthora -- 9.5 Applications of CRISPR-Cas in genetic engineering of Phytophthora.

9.6 Challenges of CRISPR-Cas in Phytophthora -- 9.7 CRISPR-Cas based databases and bioinformatics tools for Phytophthora -- 9.8 Conclusion and future prospects -- Acknowledgment -- References -- 10 CRISPR/Cas9 and Cas13a systems: a promising tool for plant breeding and plant defence -- 10.1 Introduction -- 10.2 CRISPR/Cas technology and engineering plant resistance to viruses -- 10.3 Targeting plant DNA viruses using CRISPR/Cas9 -- 10.4 Targeting RNA viruses using CRISPR/Cas13 and FnCas9 -- 10.4.1 Direct interference of viral RNA genomes -- 10.4.2 Interference of plant host factors aiding viral infection -- 10.4.3 Advantages of genome editing technologies for breeding virus resistance -- 10.4.4 Caveats of employing the CRISPR/Cas technology to engineer resistance to plant viruses -- 10.4.4.1 Overcoming the caveats of the CRISPR/Cas systems -- 10.4.5 Future directions of genome editing to protect crops from viruses -- 10.5 CRISPR technology for plant improvement -- 10.5.1 Rice -- 10.5.2 Wheat -- 10.5.3 Cotton -- 10.5.4 Maize -- 10.5.5 Soya bean -- 10.5.6 Tomato -- 10.5.7 Potato -- 10.5.8 Citrus -- 10.5.9 Apples -- 10.6 Conclusion -- References -- 11 CRISPR/Cas techniques: a new method for RNA interference in cereals -- 11.1 Introduction -- 11.2 Overview of CRISPR/Cas system -- 11.3 CRISPR system for genome editing in cereals -- 11.3.1 CRISPR/Cas system for rice improvement -- 11.3.2 CRISPR/Cas system for wheat improvement -- 11.3.3 CRISPR/Cas system for maize improvement -- 11.3.4 CRISPR/Cas system for sorghum improvement -- 11.4 CRISPR/Cas system a better choice for genome editing -- 11.5 Recent developments in CRISPR technology -- 11.6 Conclusion and future prospectus -- References -- 12 Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat -- 12.1 Introduction -- 12.2 Objective -- 12.3 Background.

12.3.1 Structure and mechanism of Cas9 -- 12.3.2 Types of CRISPR/Cas and opportunity headed for genome editing -- 12.4 Steps involved in CRISPR/Cas9 mediated genome editing -- 12.5 Different technologies evolved from CRISPR -- 12.5.1 Gene and epigenome editing in wheat -- 12.5.2 Transcriptional activation and suppression using dCas9 -- 12.5.3 Site-directed foreign DNA insertion in the wheat genome -- 12.5.4 Multiplexed engineering in wheat -- 12.5.4.1 Multiple gRNAs with their respective promoters -- 12.5.4.2 Multiple gRNAs using tRNA processing enzymes -- 12.5.4.3 Multiple gRNAs using Csy4 -- 12.5.5 Viral replicon based editing in wheat -- 12.6 The delivery methods of CRISPR/Cas9 construct in wheat -- 12.6.1 Biolistic mediated delivery of CRISPR/Cas9 in the wheat -- 12.6.2 Agrobacterium-mediated transformation in wheat -- 12.6.3 Floral dip/microspore-based gene editing in wheat -- 12.6.4 PEG-mediated delivery of CRISPR/Cas9 reagents or vector -- 12.7 Genome engineering for wheat improvement -- 12.7.1 Improvement for grain quality and stress-tolerant wheat -- 12.7.2 CRISPR/Cas9 mediated fungal resistant wheat -- 12.8 Conclusion and outlook -- Acknowledgments -- References -- 13 Application of CRISPR/Cas system for genome editing in cotton -- 13.1 Introduction -- 13.2 Genome editing technologies -- 13.3 CRISPR/Cas genome editing system -- 13.4 Application of CRISPR/Cas9 for genome editing in cotton -- 13.4.1 Utilization of CRISPR for biotic stresses -- 13.4.2 Utilization of CRISPR for abiotic stresses -- 13.4.3 Utilization of CRISPR for fiber quality -- 13.4.4 Utilization of CRISPR for plant architecture and flowering -- 13.4.5 Utilization of CRISPR for virus-induced disease resistance -- 13.4.6 Utilization of CRISPR for epigenetic modifications -- 13.4.7 Utilization of CRISPR for multiplexed gene stacking.
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 600581-1001 XX(600581.1)
Searching...

On Order