
Title:
Insect resistance management : biology, economics, and prediction
Author:
Onstad, David W., editor.
ISBN:
9780128238011
Edition:
Third edition.
Physical Description:
1 online resource : illustrations.
Contents:
Front Cover -- Insect Resistance Management -- Copyright Page -- Contents -- List of contributors -- About the editors -- Foreword -- References -- Preface to third edition -- Cover description -- 1. Major issues in insect resistance management -- 1.1 Philosophy and history -- 1.1.1 History and current status of resistance to pesticides -- 1.1.2 Definitions of insect resistance -- 1.2 Mechanisms of resistance to toxins -- 1.3 Major themes -- 1.3.1 Integrated pest management -- 1.3.2 Long-term, areawide integrated pest management -- 1.3.3 Coordination -- 1.3.4 Pest behavior -- 1.3.5 Variability and complexity of management strategies -- 1.3.5.1 Kill fewer susceptibles -- 1.3.5.2 Kill all the heterozygotes -- 1.3.5.3 Use two treatments -- 1.3.5.4 The future is not the past -- 1.4 Encouragement -- References -- 2. Valuing pest susceptibility to control -- 2.1 Goods and values -- 2.1.1 Goods -- 2.1.2 Values -- 2.2 Valuation of pests -- 2.2.1 Valuation of pest population densities and damage -- 2.2.2 Valuation of pest susceptibility -- 2.3 Discounting and valuing the future -- 2.4 Risk -- 2.5 Overview of economic models -- 2.6 Conclusion -- References -- 3. Integrated pest management in Africa: the necessary foundation for insect resistance management -- 3.1 Introduction -- 3.1.1 Cropping systems in Africa -- 3.2 Insect pests of major crops in Africa -- 3.2.1 Cassava -- 3.2.2 Cotton -- 3.2.3 Cowpea -- 3.2.4 Maize -- 3.2.5 Millet -- 3.2.6 Sorghum -- 3.2.7 Rice -- 3.2.8 Soybean -- 3.2.9 Wheat -- 3.2.10 Potato -- 3.3 Integrated pest management in Africa -- 3.3.1 Challenges to IRM strategies -- 3.3.2 Key obstacles to the adoption integrated pest management technologies in sub-Saharan Africa -- 3.3.3 Integrated pest management must be cost-effective -- 3.3.4 Integrated pest management must account for farming practices.
3.3.5 Integrated pest management requires proper training and education -- 3.3.6 Weak incentives for adoption -- 3.3.7 Research weaknesses -- 3.3.8 Outreach challenges -- 3.3.9 Integrated pest management should not be based on programs in developed countries -- 3.4 Conclusions -- References -- 4. Concepts and complexities of population genetics -- 4.1 Without natural selection -- 4.2 Evolution due to natural selection -- 4.3 Natural selection in patchy landscapes -- 4.3.1 Genotypic fitness constant over time -- 4.3.2 Variable fitness over time and space -- 4.4 Gene flow and population structure -- 4.5 Mating -- 4.6 Random genetic drift and demographic Allee effects -- 4.7 Genetic architecture and evolution -- 4.8 Mutations, gene pool, and genetic variation -- 4.9 Dominance -- 4.10 Gene interactions -- 4.11 Fitness costs -- 4.12 Haplodiploidy -- 4.13 Resistance evolution and pest generation time -- 4.14 Temporal and spatial scales in hypotheses -- 4.15 Conclusions -- References -- 5. Resistance in ectoparasites -- 5.1 Definitions -- 5.2 Mosquitoes -- 5.2.1 Integrated pest management and alternatives for management -- 5.2.2 Recent history of resistance in some mosquitoes -- 5.2.3 Economics and planning -- 5.2.4 Modeling and prediction -- 5.3 Bed bugs -- 5.4 Human head lice -- 5.5 Fleas of cats and dogs -- 5.6 Mites on bees -- 5.7 Ticks of cattle -- 5.8 Blow fly in sheep -- 5.9 Horn fly on cattle -- 5.10 Musca domestica -- 5.11 Discussion -- References -- 6. Insect resistance to crop rotation -- 6.1 History of crop rotation -- 6.1.1 Specialist pests are vulnerable to crop rotation -- 6.2 Corn production, corn rootworm, and chemical insecticides -- 6.2.1 History of Diabrotica -- 6.2.2 Corn rootworm biology -- 6.2.3 Chemical insecticides and corn rootworm control -- 6.3 Resistance to crop rotation -- 6.3.1 Northern corn rootworm and prolonged diapause.
6.3.2 Western corn rootworm and behavioral resistance to crop rotation -- 6.3.3 The biology of rotation-resistant western corn rootworm -- 6.3.4 Movement and the mechanism of behavioral resistance to crop rotation -- 6.4 Managing rotation-resistant corn rootworms -- 6.4.1 Monitoring rotation-resistant western corn rootworm -- 6.4.2 Monitoring western corn rootworm in Europe -- 6.4.3 Insecticides -- 6.4.4 Transgenic insecticidal corn -- 6.4.5 Prediction and rootworm insect resistance management -- 6.4.6 Incorporating western corn rootworm biology into insect resistance management -- 6.5 Future resistance -- References -- 7. Resistance to pathogens and parasitic invertebrates -- 7.1 Resistance to pathogens -- 7.1.1 Resistance to viruses -- 7.1.2 Resistance to CpGV by Cydia pomonella -- 7.2 Resistance to bacterial toxins -- 7.3 Resistance to parasitic invertebrates -- 7.3.1 Drosophila melanogaster resistance to parasitoids -- 7.3.2 Resistance by Listronotus bonariensis to a parasitoid -- 7.4 Conclusion -- References -- 8. Arthropod resistance to crops -- 8.1 Traditional crops -- 8.1.1 Nasonovia ribisnigri -- 8.1.2 Tetranychus urticae -- 8.1.3 Mayetiola destructor -- 8.1.4 Sitodiplosis mosellana -- 8.1.5 Schizaphis graminum -- 8.2 Transgenic insecticidal crops -- 8.2.1 Leptinotarsa decemlineata -- 8.2.2 Pectinophora gossypiella -- 8.2.3 Plutella xylostella -- 8.2.4 Busseola fusca -- 8.3 Discussion -- References -- 9. Resistance to genetic control -- 9.1 Introduction -- 9.2 The sterile insect technique: a brief history -- 9.3 Genetic dead-end systems -- 9.4 Systems with limited persistence -- 9.5 Self-sustaining systems -- 9.5.1 Naturally occurring systems -- 9.5.2 Engineered systems -- 9.5.3 Categories of gene drive systems -- 9.6 Resistance and resistance management -- 9.6.1 Locus-specific resistance -- 9.6.2 Assortative mating -- 9.7 Concluding remarks.
12.2 Risk assessment for insect resistance management -- 12.2.1 Stochastic models and uncertainty analysis -- 12.2.2 An example of uncertainty analysis -- 12.2.2.1 Model description -- 12.2.2.1.1 Probability distributions -- 12.2.2.1.2 Scenarios and parameters -- 12.2.2.1.3 Simulation approach -- 12.2.2.2 Results -- 12.2.3 Ideas based on this uncertainty analysis -- 12.3 Insect resistance management models -- 12.3.1 Effects of pest phenology -- 12.3.2 Complex biological models with simple economic analyses -- 12.3.3 Modeling density-dependent factors -- 12.4 Conclusion -- References -- 13. Monitoring resistance -- 13.1 The concept of a distribution of tolerances -- 13.2 Monitoring based on screening populations -- 13.3 Essentials of laboratory bioassays -- 13.4 Single, discriminating dose approach -- 13.5 Dose-response approach -- 13.6 The two-dose approach -- 13.7 Other methods for quantifying resistance -- 13.8 Monitoring programs -- 13.9 Probability of detecting low levels of resistance -- 13.10 Examples of monitoring projects -- 13.11 Conclusion -- References -- 14. Fitness costs of resistance and their potential application for insect resistance management -- 14.1 Introduction -- 14.2 Refuges -- 14.3 Manipulating the dominance and magnitude of fitness costs -- 14.4 Application of fitness costs to manage insect resistance to Bt crops -- 14.5 Application of fitness costs to manage insect resistance to conventional insecticides -- 14.6 Insect behavior and fitness costs -- 14.7 Limitations in the application of fitness costs and examples involving Bt resistance -- 14.8 Conclusion -- References -- 15. Insect resistance management: adoption and compliance -- 15.1 Conceptual framework -- 15.2 Human behavior -- 15.2.1 Adoption behavior -- 15.2.2 Compliance behavior -- 15.3 Implications of human behavior -- 15.3.1 Refuge policy.
Subject Term:
Electronic Access:
ScienceDirect https://www.sciencedirect.com/science/book/9780128237878Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 600696-1001 | XX(600696.1) | Searching... | Searching... |
