
Title:
Machine Learning for Causal Inference
Author:
Li, Sheng. editor.
ISBN:
9783031350511
Edition:
1st ed. 2023.
Physical Description:
XVI, 298 p. 73 illus., 49 illus. in color. online resource.
Contents:
Overview of the Book -- Causal Inference Preliminary -- Causal Effect Estimation: Basic Methodologies -- Causal Inference on Graphs -- Causal Effect Estimation: Recent Progress, Challenges, and Opportunities -- Fair Machine Learning Through the Lens of Causality -- Causal Explainable AI -- Causal Domain Generalization -- Causal Inference and Natural Language Processing -- Causal Inference and Recommendations -- Causality Encourage the Identifiability of Instance-Dependent Label Noise -- Causal Interventional Time Series Forecasting on Multi-horizon and Multi-series Data -- Continual Causal Effect Estimation -- Summary.
Added Corporate Author:
Electronic Access:
https://doi.org/10.1007/978-3-031-35051-1Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 528837-1001 | ONLINE | Searching... | Searching... |
