
Title:
Handbook of industrial polyethylene and technology : definitive guide to manufacturing, properties, processing, applications and markets
Author:
Spalding, Mark A., editor.
ISBN:
9781119159773
9781119159780
9781119159797
9781523121656
9781119413868
9781119413691
9781119159766
Physical Description:
1 online resource
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- List of Contributors -- Part 1: Principles and Properties of Polyethylene -- 1 An Industrial Chronology of Polyethylene -- 1.1 Overview -- 1.2 The Early Years -- 1.3 High Pressure Polyethylene -- 1.4 The Advent of High Density Polyethylene -- 1.5 Product and Process Proliferation -- 1.6 Single-Site Catalysts Arrive -- 1.7 The Future of LDPE -- References -- 2 Catalysts for the Manufacture of Polyethylene -- 2.1 Introduction -- 2.2 Synthesis of Low Density Polyethylene -- 2.2.1 Peroxide Initiators -- 2.2.2 Chemistry of Radical Polymerization Reactions -- 2.2.3 Types and Degree of Branching in Low Density Polyethylene Resins -- 2.3 Catalytic Synthesis of Polyethylene Resins -- 2.3.1 Commercial Technologies of PE Manufacture -- 2.3.2 Chromium-Based Catalysts -- 2.3.3 Titanium-Based Ziegler-Natta Catalysts -- 2.3.4 Metallocene Catalysts -- 2.3.5 Post-Metallocene Ethylene Polymerization Catalysts -- 2.3.6 Binary Transition Metal Catalysts -- 2.4 Chemistry of Catalytic Polymerization Reactions -- 2.5 Uniformity of Active Centers -- 2.5.1 Uniformity of Active Centers with Respect to Molecular Weight of Polymers -- 2.5.2 Uniformity of Active Centers with Respect to Copolymerization Ability -- References -- 3 Ethylene Polymerization Processes and Manufacture of Polyethylene -- 3.1 Introduction -- 3.1.1 Magnitude of the PE Industry -- 3.1.2 Active Processes -- 3.1.3 Range of Products -- 3.1.4 Chronology of Development of Processes -- 3.2 Processes -- 3.2.1 Common Principles of Ethylene Polymerization at Commercial Scale -- 3.2.2 High-Pressure Process Technology -- 3.2.3 Gas-Phase Fluidized Bed Reactors -- 3.2.4 Slurry Reactors -- 3.2.5 Solution Reactors -- 3.2.6 Hybrid Processes -- 3.3 Resin Property and Reactor Control in Catalytic Polymerization Reactors -- 3.3.1 Production Rate.
3.3.2 Catalyst Productivity -- 3.3.3 Reactor Pressure -- 3.3.4 Crystallinity -- 3.3.5 Molecular Weight -- 3.4 Economics -- References -- 4 Types and Basics of Polyethylene -- 4.1 Introduction -- 4.2 Low Density Polyethylene (LDPE) -- 4.3 Ethylene Vinyl Acetate (EVA) Copolymer -- 4.4 Acrylate Copolymers -- 4.5 Acid Copolymers -- 4.6 Ionomers -- 4.7 High Density Polyethylene (HDPE) -- 4.8 Ultra-High Molecular Weight HDPE (UHMW-HDPE) -- 4.9 Linear Low Density Polyethylene (LLDPE) -- 4.10 Very Low Density Polyethylene (VLDPE) -- 4.11 Single-Site Catalyzed Polyethylenes -- 4.12 Olefin Block Copolymers (OBC) -- 4.13 Concluding Remarks -- Acknowledgments -- References -- 5 Molecular Structural Characterization of Polyethylene -- 5.1 Introduction -- 5.2 Molecular Weight -- High Temperature GPC -- 5.3 Comonomer Distribution Measurement Techniques -- 5.3.1 Temperature Rising Elution Fractionation (TREF) -- 5.3.2 Crystallization Analysis Fractionation (CRYSTAF) -- 5.3.3 Crystallization Elution Fractionation (CEF) -- 5.3.4 High-Temperature Liquid Chromatography (HT-LC) -- 5.3.5 Thermal Gradient Interaction Chromatography (TGIC) -- 5.3.6 Statistical Parameters -- 5.4 PE Characterization with NMR -- 5.5 Polymer Analysis Using Vibrational Spectroscopy -- 5.5.1 Basic Theory of Infrared and Raman Spectroscopy -- 5.5.2 General Applicability of Infrared and Raman Spectroscopy to Polymers and Related Materials -- 5.5.3 Qualitative Identification Using Infrared and Raman Spectroscopy -- 5.5.4 Quantitative Analysis Using Infrared and Raman Spectroscopy -- 5.5.5 PE Morphology -- 5.6 Emerging Techniques -- Acknowledgments -- References -- 6 Thermal Analysis of Polyethylene -- 6.1 Introduction -- 6.2 Differential Scanning Calorimetry (DSC) -- 6.2.1 Glass Transition and Melting Temperature -- 6.2.2 Heat Capacity Measurements -- 6.2.3 Crystallization Studies.
6.2.4 Oxidative Induction Time (OIT) -- 6.3 Thermogravimetric Analysis (TGA) -- 6.4 Thermomechanical Analysis (TMA) -- 6.4.1 Coefficient of Thermal Expansion -- 6.4.2 Softening Point, Heat Distortion and Other Tests -- 6.5 Dynamic Mechanical Analysis (DMA) -- 6.5.1 Temperature Scans -- Modulus and Transition Temperatures -- 6.5.2 Frequency and Other Scans -- 6.6 Coupled Thermal Techniques -- 6.6.1 Spectral DSC -- 6.6.2 Evolved Gas Analysis (EGA) -- 6.7 Conclusions -- References -- 7 Rheology of Polyethylene -- 7.1 Rheology Fundamentals -- 7.1.1 Flow Testing -- 7.1.2 Deformation Testing -- 7.1.3 Dynamic Testing: Fundamentals, Dynamic Strain Sweeps, Frequency Sweeps, Dynamic Temperature Ramps -- 7.2 Melt Rheology -- 7.2.1 Extrusion Plastometer -- 7.2.2 Rotational Rheometry -- 7.2.3 Capillary Rheometry -- 7.2.4 Time Temperature Superposition with Capillary Data -- 7.3 Dynamic Mechanical Testing on Solids and Solid-Like Materials -- 7.3.1 Dynamic Testing with Rotational Deformation -- 7.3.2 Dynamic Testing in Linear Deformation -- 7.3.3 Dynamic Temperature Ramps -- 7.3.4 Other Tests on a DMA -- 7.4 Conclusions -- References -- 8 Processing-Structure-Property Relationships in Polyethylene -- 8.1 Introduction -- 8.2 Processing-Structure-Properties Relationship in PE Blown Films -- 8.3 Processing-Structure-Properties Relationship in PE Cast Films -- 8.4 Processing-Structure-Properties Relationship in PE Injection Molding -- 8.5 Processing-Structure-Properties Relationship in PE Blow Molding -- 8.6 Processing-Structure-Properties Relationship in PE Fibers and Nonwovens -- 8.7 Summary -- Acknowledgments -- References -- 9 Mechanical Properties of Polyethylene: Deformation and Fracture Behavior -- 9.1 Introduction -- 9.2 Stress-Strain Relations for PE -- 9.3 True Stress-Strain-Temperature Diagrams -- 9.4 Time Dependency of Necking in PE.
9.5 Accelerated Testing for PE Lifetime in Durable Applications -- 9.6 Temperature Acceleration of SCG in PE -- 9.7 Conclusions -- References -- Part 2: Processing and Fabrication of Polyethylene -- 10 Single-Screw Extrusion of Polyethylene Resins -- 10.1 Introduction -- 10.2 Screw Sections and Processes -- 10.3 Common Problems -- 10.3.1 Gels -- 10.3.2 Rate Restriction at the Entry of a Barrier Flighted Melting Section -- 10.3.3 Nitrogen Inerting -- 10.4 Process Assessments -- References -- 11 Twin-Screw Extrusion of Polyethylene -- 11.1 Introduction -- 11.2 History -- 11.3 Twin-Screw Extruder Design -- 11.3.1 Twin-Screw Mixers -- 11.4 Components for Compounding Lines -- 11.4.1 Gear Pumps -- 11.4.2 Screen Changers -- 11.4.3 Underwater Pelletizer -- 11.5 Twin-Screw Mixer Performance for Bi-Modal HDPE Resins -- 11.5.1 Improved Mixing Capability for Bi-Modal HDPE Resins -- 11.6 Devolatilization Extrusion -- 11.7 Common Problems Associated with Twin-Screw Extruders -- 11.7.1 Poor Scale-Up Practices -- 11.7.2 Degassing Through the Hopper -- 11.7.3 Die Hole Design to Increase Rate -- 11.7.4 Agglomerate Formation -- References -- 12 Blown Film Processing -- 12.1 Introduction -- 12.2 Line Rates -- 12.3 Monolayer Blown Film Dies -- 12.4 Coextrusion Blown Film Dies -- 12.5 Bubble Forming -- 12.5.1 Single-Orifice Air Rings -- 12.5.2 Dual-Orifice Air Rings -- 12.6 Process Parameters -- 12.6.1 Heat Transfer -- 12.6.2 Film Orientation -- 12.7 Blown Film Properties -- References -- 13 Cast Film Extrusion of Polyethylene -- 13.1 Description and Comparison to Blown Film Extrusion -- 13.2 Plasticating Extrusion -- 13.3 Dies -- 13.4 Cooling -- 13.5 Cast Film Processability of PE resins -- 13.6 Common Cast Extrusion Problems and Troubleshooting -- 13.6.1 Gauge Variation -- 13.6.2 Neck-Down and Edge Trim -- 13.6.3 Draw Resonance and Edge Instability.
13.6.4 Film Breakage -- 13.6.5 Melt Fracture -- 13.6.6 Cleaning, Purging, and Resin Degradation -- 13.7 Latest Developments -- 13.7.1 Microlayer Coextrusion Die Technology -- 13.7.2 High-Speed Winder Technology -- 13.7.3 Latest Cast Extrusion Die Technologies -- References -- 14 Extrusion Coating and Laminating -- 14.1 Introduction -- 14.2 Equipment -- 14.3 Materials -- 14.4 Processing -- 14.5 Conclusions -- References -- 15 Injection Molding -- 15.1 Introduction -- 15.2 Machinery -- 15.2.1 Typical Machine -- 15.2.2 Shot Capacity -- 15.2.3 Plasticating Capacity -- 15.2.4 Clamp Capacity -- 15.2.5 Non-Return Valves -- 15.3 Computer-Aided Design and Engineering -- 15.3.1 Flow Analysis -- 15.3.2 Dimensional Analysis -- 15.3.3 Structural Analysis -- 15.4 Part Design -- 15.4.1 Bottom Design -- 15.4.2 Sidewall Design -- 15.4.3 Lip and Edge Design -- 15.5 Mold Design -- 15.5.1 Design for Part Shrinkage -- 15.5.2 Gating -- 15.5.3 Sprue and Runner Design -- 15.5.4 Runner Systems -- 15.5.5 Insulated Runner with Auxiliary Heat -- 15.5.6 Hot Runner Block -- 15.5.7 Mold Cooling -- 15.5.8 Coolant Circulation -- 15.5.9 Core Pin Cooling -- 15.5.10 Air Pockets -- 15.5.11 Gate Cooling -- 15.6 Processing -- 15.6.1 Mold Temperature -- 15.6.2 Melt Temperature -- 15.6.3 Injection Molding Cycle -- 15.6.4 Injection Fill -- 15.6.5 Velocity Control versus Pressure Control -- 15.6.6 Packing/Hold -- 15.6.7 Post-Mold Shrinkage -- 15.7 Conclusions -- References -- 16 Blow Molding of Polyethylene -- 16.1 Introduction -- 16.2 Blow Molding Processes Using PE -- 16.2.1 Extrusion Blow Molding (EBM) -- 16.2.2 Injection Blow Molding (IBM) -- 16.2.3 Stretch Blow Molding (SBM) -- 16.2.4 Compression Blow Forming (CBF) -- 16.2.5 Suction 3D Blowmolding (SuBM) -- 16.2.6 Other Blow Molding Processes -- 16.3 Product Design with PE -- 16.3.1 Functional Design -- 16.3.2 Bottle Design.
Abstract:
This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.
Local Note:
John Wiley and Sons
Genre:
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119159797Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 593871-1001 | TP1180 .P65 | Searching... | Searching... |
