
Title:
Hydrogen production technologies
Author:
Sankir, Mehmet, editor.
ISBN:
9781119283652
9781119283669
9781119283676
9781523115037
Physical Description:
1 online resource
Series:
Advances in hydrogen production and storage
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Catalytic and Electrochemical Hydrogen Production -- 1 Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling -- 1.1 Introduction -- 1.2 Catalyst Development for the Steam Reforming Process -- 1.2.1 Catalyst Development for the Steam Reforming of Methanol (SRM) -- 1.2.2 Catalyst Development for the Steam Reforming of Ethanol (SRE) -- 1.2.2.1 Co-Based Catalysts for SRE -- 1.2.2.2 Ni-Based Catalysts for SRE -- 1.2.2.3 Bimetallic-Based Catalysts for SRE -- 1.2.3 Catalyst Development for the Steam Reforming of Glycerol (SRG) -- 1.3 Kinetics and Reaction Mechanism for Steam Reforming of Oxygenated Hydrocarbons -- 1.3.1 Surface Reaction Mechanism for SRM -- 1.3.2 Surface Reaction Mechanism for SRE -- 1.3.3 Surface Reaction Mechanism for SRG -- 1.4 Reactor Modeling and Simulation in Steam Reforming of Oxygenated Hydrocarbons -- References -- 2 Ammonia Decomposition for Decentralized Hydrogen Production in Microchannel Reactors: Experiments and CFD Simulations -- 2.1 Introduction -- 2.2 Ammonia Decomposition for Hydrogen Production -- 2.2.1 Ammonia as a Hydrogen Carrier -- 2.2.2 Thermodynamics of Ammonia Decomposition -- 2.2.3 Reaction Mechanism and Kinetics for Ammonia Decomposition -- 2.2.3.1 Effect of Ammonia Concentration -- 2.2.3.2 Effect of Hydrogen Concentration -- 2.2.4 Current Status for Hydrogen Production Using Ammonia Decomposition -- 2.2.4.1 Microreactors for Ammonia Decomposition -- 2.3 Ammonia-Fueled Microchannel Reactors for Hydrogen Production: Experiments -- 2.3.1 Microchannel Reactor Design -- 2.3.2 Reactor Operation and Performance -- 2.3.2.1 Microchannel Reactor Operation -- 2.3.2.2 Performance and Operational Considerations -- 2.3.2.3 Performance Comparison with Other Ammonia Microreactors.
2.4 CFD Simulation of Hydrogen Production in Ammonia-Fueled Microchannel Reactors -- 2.4.1 Model Validation -- 2.4.2 Velocity, Temperature and Concentration Distributions -- 2.4.3 Evaluation of Mass Transport Limitations -- 2.4.4 Model Limitations: Towards Multiscale Simulations -- 2.5 Summary -- Acknowledgments -- References -- 3 Hydrogen Production with Membrane Systems -- 3.1 Introduction -- 3.2 Pd-Based Membranes -- 3.2.1 Long-Term Stability of Ceramic Supported Thin Pd-Based Membranes -- 3.2.2 Long-Term Stability of Metallic Supported Thin Pd-Based Membranes -- 3.3 Fuel Reforming in Membrane Reactors for Hydrogen Production -- 3.3.1 Ceramic Supported Pd-Based Membrane Reactor and Comparison with Commercial Membrane -- 3.3.2 Metallic Supported Pd-Based Membrane Reactor -- 3.4 Thermodynamic and Economic Analysis of Fluidized Bed Membrane Reactors for Methane Reforming -- 3.4.1 Comparison of Membrane Reactors to Emergent Technologies -- 3.4.1.1 Methods and Assumptions -- 3.4.1.2 Comparison -- 3.4.2 Techno-Economical Comparison of Membrane Reactors to Benchmark Reforming Plant -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Catalytic Hydrogen Production from Bioethanol -- 4.1 Introduction -- 4.2 Production Technology Overview -- 4.2.1 Fermentative Hydrogen Production -- 4.2.2 Photocatalytic Hydrogen Production -- 4.2.3 Aqueous Phase Reforming -- 4.2.4 CO2 Dry Reforming -- 4.2.5 Plasma Reforming -- 4.2.6 Partial Oxidation -- 4.2.7 Steam Reforming -- 4.3 Catalyst Overview -- 4.4 Catalyst Optimization Strategies -- 4.5 Reaction Mechanism and Kinetic Studies -- 4.6 Computational Approaches -- 4.7 Economic Considerations -- 4.8 Future Development Directions -- Acknowledgment -- References -- 5 Hydrogen Generation from the Hydrolysis of Ammonia Borane Using Transition Metal Nanoparticles as Catalyst -- 5.1 Introduction.
5.2 Transition Metal Nanoparticles in Catalysis -- 5.3 Preparation, Stabilization and Characterization of Metal Nanoparticles -- 5.4 Transition Metal Nanoparticles in Hydrogen Generation from the Hydrolysis of Ammonia Borane -- 5.5 Durability of Catalysts in Hydrolysis of Ammonia Borane -- 5.6 Conclusion -- References -- 6 Hydrogen Production by Water Electrolysis -- 6.1 Historical Aspects of Water Electrolysis -- 6.2 Fundamentals of Electrolysis -- 6.2.1 Thermodynamics -- 6.2.2 Kinetics and Efficiencies -- 6.3 Modern Status of Electrolysis -- 6.3.1 Water Electrolysis Technologies -- 6.3.2 Alkaline Water Electrolysis -- 6.3.3 PEM Water Electrolysis -- 6.3.4 High Temperature Water Electrolysis -- 6.4 Perspectives of Hydrogen Production by Electrolysis -- Acknowledgment -- References -- 7 Electrochemical Hydrogen Production from SO2 and Water in a SDE Electrolyzer -- 7.1 Introduction -- 7.2 Membrane Characterization -- 7.2.1 Weight Change -- 7.2.2 Ion Exchange Capacity (IEC) -- 7.2.3 TGA-MS -- 7.3 MEA Characterization -- 7.3.1 MEA Manufacture -- 7.3.2 MEA Characterization -- 7.4 Effect of Anode Impurities -- 7.5 High Temperature SO2 Electrolysis -- 7.6 Conclusion -- References -- Part II Bio Hydrogen Production -- 8 Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil -- 8.1 Introduction -- 8.2 Biomass Pyrolysis to Produce Bio-Oils -- 8.2.1 Fast Pyrolysis for Bio-Oil Production -- 8.2.2 Pyrolysis Reactions -- 8.2.2.1 Hemicellulose Pyrolysis -- 8.2.2.2 Cellulose Pyrolysis -- 8.2.2.3 Lignin Pyrolysis -- 8.2.2.4 Char Formation Process -- 8.2.3 Influence of the Pretreatment of Raw Biomass and Pyrolysis Paramenters on Bio-Oil Production -- 8.2.4 Pyrolysis Reactors -- 8.2.4.1 Drop Tube Reactor -- 8.2.4.2 Bubbling Fluid Beds -- 8.2.4.3 Circulating Fluid Beds and Transported Beds -- 8.2.4.4 Rotating Cone -- 8.2.4.5 Ablative Pyrolysis.
8.2.4.6 Vacuum Pyrolysis -- 8.2.4.7 Screw or Auger Reactors -- 8.3 Bio-oil Reforming Processes -- 8.3.1 Bio-oil Reforming Reactions -- 8.3.2 Reforming Catalysts -- 8.3.2.1 Non-Noble Metal-Based Catalysts -- 8.3.2.2 Noble Metal-Based Catalysts -- 8.3.2.3 Conventional Supports -- 8.3.2.4 Non-Conventional Supports -- 8.3.3 Reaction Systems -- 8.3.4 Reforming Process Intensifications -- 8.3.4.1 Sorption Enhanced Steam Reforming -- 8.3.4.2 Chemical Looping -- 8.3.4.3 Sorption Enhanced Chemical Looping -- 8.4 Future Prospects -- References -- 9 Production of a Clean Hydrogen-Rich Gas by the Staged Gasification of Biomass and Plastic Waste -- 9.1 Introduction -- 9.2 Chemistry of Gasification -- 9.3 Tar Cracking and H2 Production -- 9.4 Staged Gasification -- 9.4.1 Two-Stage UOS Gasification Process -- 9.4.2 Three-Stage UOS Gasification Process -- 9.5 Experimental Results and Discussion -- 9.5.1 Effects of Type of Feed Material on H2 Production -- 9.5.2 Effect of Activated Carbon on H2 Production -- 9.5.3 Effects of Other Reaction Parameters on H2 Production -- 9.5.3.1 Temperature -- 9.5.3.2 ER -- 9.5.3.3 Gasifying Agent -- 9.5.4 Comparison of Two-Stage and Three-Stage Gasifiers -- 9.5.5 Tar Removal Mechanism over Activated Carbon -- 9.5.6 Deactivation of Activated Carbon and Long-Term Gasification Experiments -- 9.5.7 Removal of Other Impurities (NH3, H2S, and HCl) -- 9.6 Conclusions -- References -- 10 Enhancement of Bio-Hydrogen Production Technologies by Sulphate-Reducing Bacteria -- 10.1 Introduction -- 10.2 Sulphate-Reducing Bacteria for H2 Production -- 10.3 Mathematical Modeling of the SR Fermentation -- 10.4 Bifurcation Analysis -- 10.5 Process Control Strategies -- 10.6 Conclusions -- Acknowledgment -- Nomenclature -- References.
11 Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications -- 11.1 Introduction -- 11.2 Principles of MEC for Hydrogen Production -- 11.3 Thermodynamics of MEC -- 11.4 Factors Influencing the Performance of MECs -- 11.4.1 Biological Factors -- 11.4.1.1 Electrochemically Active Bacteria (EAB) in MECs -- 11.4.1.2 Extracellular Electron Transfer in MECs -- 11.4.1.3 Inoculation and Source of Inoculum -- 11.4.2 Electrode Materials Used in MECs -- 11.4.2.1 Anode Electrode Materials -- 11.4.2.2 Cathode Electrode Materials or Catalysts -- 11.4.3 Membrane or Separator -- 11.4.4 Physical Factors -- 11.4.5 Substrates Used in MECs -- 11.4.6 MEC Operational Factors -- 11.4.6.1 Applied Voltage -- 11.4.6.2 Other Key Operational Factors -- 11.5 Current Application of MECs -- 11.5.1 Hydrogen Production and Wastewater Treatment -- 11.5.1.1 Treatment of DWW Using MECs -- 11.5.1.2 Use of MECs for Treatment of IWW and Other Types of WW -- 11.5.2 Application of MECs in Removal of Ammonium or Nitrogen from Urine -- 11.5.3 MECs for Valuable Products Synthesis -- 11.5.3.1 Methane (CH4) -- 11.5.3.2 Acetate -- 11.5.3.3 Hydrogen Peroxide (H2O2) -- 11.5.3.4 Ethanol (C2H5OH) -- 11.5.3.5 Formic Acid (HCOOH) -- 11.6 Conclusions and Prospective Application of MECs -- Acknowledgments -- References -- 12 Algae to Hydrogen: Novel Energy-Efficient Co-Production of Hydrogen and Power -- 12.1 Introduction -- 12.2 Algae Potential and Characteristics -- 12.2.1 Algae Potential -- 12.2.2 Types of Algae -- 12.2.3 Compositions of Algae -- 12.3 Energy-Efficient Energy Harvesting Technologies -- 12.4 Pretreatment (Drying) -- 12.5 Conversion of Algae to Hydrogen-Rich Gases -- 12.5.1 SCWG for Algae -- 12.5.1.1 Integrated System with SCWG -- 12.5.1.2 Analysis of the Integrated System.
Abstract:
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Local Note:
John Wiley and Sons
Subject Term:
Genre:
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119283676Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 593452-1001 | TP261 .H9 | Searching... | Searching... |
