
Title:
Chemically Modified Carbon Nanotubes for Commercial Applications.
Author:
Aslam, Jeenat.
ISBN:
9783527838790
9783527838813
9783527838806
Physical Description:
1 online resource (539 pages)
General Note:
12.2.5.2 Purification of DWCNTs.
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc-Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect-Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References.
Chapter 3 Latest Developments in Commercial Scale Fabrications for Chemically Modified Carbon Nanotubes -- Abbreviations -- 3.1 Introduction -- 3.2 Industrial Scale Fabrication Strategies -- 3.2.1 Basic Chemical Vapor Deposition (CVD) Process -- 3.2.1.1 Industrial Level Fabrication of CNT Through Various CVD Methods -- 3.2.1.2 High-Pressure Chemical Vapor Deposition -- 3.2.1.3 Atmospheric-Pressure Chemical Vapor Deposition (APCVD) -- 3.2.1.4 Low-Pressure Chemical Vapor Deposition (LPCVD) -- 3.3 CVD on the Basis of Reactor Wall Temperature -- 3.3.1 Hot-Wall Chemical Vapor Deposition (Hot-Wall CVD) -- 3.3.2 Cold-Wall Chemical Vapor Deposition (Cold-Wall CVD) -- 3.4 Arc-Discharge -- 3.5 Laser Vaporization -- 3.6 Other Synthesis Methods -- 3.7 Applications -- 3.7.1 Transistors -- 3.7.2 Conductor -- 3.7.3 Composites -- 3.7.4 Aerogels -- 3.8 Future Scope -- 3.9 Conclusion -- Conflict of Interest -- Other Sources -- Acknowledgments -- References -- Chapter 4 Economical Uses of Chemically Modified Carbon Nanotubes -- 4.1 Introduction -- 4.2 Properties of Carbon Nanotubes -- 4.3 Synthesis of Carbon Nanotubes -- 4.4 Functionalization of Carbon Nanotubes -- 4.5 Characterization/Analysis of Functionalized Carbon Nanotubes -- 4.6 Economy of Carbon Nanotubes -- 4.7 Economic Importance of Carbon Nanotubes -- 4.8 Hydrogen Fuel Cells -- 4.9 Water Splitting -- 4.10 Dye-Sensitized Solar Cells -- 4.11 Quantum Dot Solar Cells -- 4.12 Silicon-Based Solar Cells -- 4.13 Thermoelectric Fabrics -- 4.14 Cost of Carbon Nanotubes -- 4.15 Globalization of Carbon Nanotubes -- 4.16 Conclusion -- References -- Part II Chemically Modified Carbon Nanotubes: Energy and Environment Applications -- Chapter 5 Chemically Modified Carbon Nanotubes in Energy Production and Storage -- Abbreviations -- 5.1 Introduction -- 5.2 Production of Carbon Nanotubes.
5.3 History of Energy Storage Devices and Materials -- 5.4 Carbon Nanotubes for Energy Storage -- 5.4.1 Carbon Nanotube Hybrid for Lithium-Metal Batteries -- 5.4.2 Wearable Energy Storage with Fiberic Carbon Nanotube -- 5.4.3 Carbon Nanotube Hybrid for Supercapacitor Energy Storage -- 5.4.4 Carbon Nanotubes/Biochar for Energy Storage -- 5.5 Present and Future of Carbon Nanotubes -- 5.6 Commercial-Scale Application of Chemically Modified CNTs for Energy Storage -- 5.7 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Energy Storage -- References -- Chapter 6 Chemically Modified Carbon Nanotubes for Pollutants Adsorption -- 6.1 Introduction -- 6.2 Chemically Modified CNTs -- 6.3 Chemically Modified CNTs for Adsorptive Removal of Pollutants -- 6.3.1 Organic Dyes -- 6.3.2 Removal of Pharmaceuticals -- 6.3.3 Other Organic Pollutants -- 6.3.4 Metal Ions -- 6.4 Influencing Factors -- 6.5 Adsorption Mechanisms of Chemically Modified CNTs -- 6.6 Modified CNT-Based Materials Toward Commercialization -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 7 Chemically Modified Carbon Nanotubes in Removal of Textiles Effluents -- 7.1 Introduction -- 7.2 History of Removal of Textiles Effluents -- 7.3 Chemically Modified Carbon Nanotubes -- 7.3.1 Chemical Properties -- 7.3.2 Modification Through Chemical Reduction of Diazonium Salts -- 7.4 Dyes Removal Techniques -- 7.5 Adsorption -- 7.6 Carbon-Based Nanoadsorbents -- 7.7 Carbon Nanotubes -- 7.8 Carbon Nanotubes as an Adsorption of Dye Molecules -- 7.9 Industrial Application of Synthetic Dyes -- 7.10 Conclusion -- Acknowledgment -- References -- Chapter 8 Chemically Modified Carbon Nanotubes in Membrane Separation -- 8.1 Introduction -- 8.2 Carbon Nanotubes (CNTs) Overview -- 8.3 Method of Synthesis of Carbon Nanotube (CNT) -- 8.3.1 Arc Discharge.
8.3.2 Laser Ablation -- 8.3.3 Chemical Vapor Deposition (CVD) -- 8.3.4 Hydrothermal -- 8.3.5 Electrolysis -- 8.4 Fabrication Methods of CNTs -- 8.4.1 Fabrication of CNT-Reinforced Metal Matrix Composites (CNT-MMCs) -- 8.4.2 Microwave-Assisted Fabrication of CNTs -- 8.5 Functionalization of CNTs -- 8.6 Chemically Modified Derivatization of CNTs -- 8.6.1 Electrochemically Assisted Covalent Modification -- 8.7 Polymer Grafting -- 8.8 Carbon Nanotubes Enhanced with Nanoparticles -- 8.9 Advantages of CNTs -- 8.10 Challenges in CNTs -- 8.11 Applications of CNTs as Membrane Separation -- 8.11.1 Water Treatment -- 8.11.2 Air Filtration -- 8.11.3 Energy Storage: Capacitors and Batteries -- 8.11.4 Electrochemical Separation and Catalysis -- 8.11.5 Electronic Devices Fabrication -- 8.11.6 Environment -- 8.11.7 Biology and Agriculture -- 8.12 Commercial-Scale of Chemically Modified CNTs in Membrane Separation -- 8.13 Future Insights -- 8.14 Conclusion -- References -- Chapter 9 Chemically Modified Carbon Nanotubes for Water Purification System -- Abbreviations -- 9.1 Introduction -- 9.2 History of Water Purification Methods -- 9.3 Carbon Nanotubes CNTs Types -- 9.4 Vital of Modification of CNTs -- 9.5 Surface Modified CNTs for Water Purification -- 9.6 Polymer/CNTs Grafting for Water Purification -- 9.7 Bulk Modified CNTs for Water Purification -- 9.8 Important of Carbon Nanotubes for Water Purification -- 9.9 Conclusions and Future Research Directions -- 9.10 Commercial Application of Chemically Modified CNTs in Water Purification -- 9.11 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Water Purification System -- References -- Part III Chemically Modified Carbon Nanotubes: Electronic and Electrical Applications -- Chapter 10 Chemically Modified Carbon Nanotubes for Electronics and Photonic Applications.
10.1 Introduction -- 10.2 Chemical Modifications of CNTs -- 10.2.1 Oxidative Functionalization of CNTs -- 10.2.2 Polymer/Ionic Liquid Modification of Oxidized CNTs -- 10.2.3 Direct Covalent Modification of CNT -- 10.2.4 Heteroatom Doping of CNTs -- 10.2.5 Charge Transfer/Noncovalent Doping of CNTs -- 10.3 Chemically Modified CNTs in Electronics -- 10.3.1 Transistors -- 10.3.2 Rectifying Diodes -- 10.3.3 Bioelectronics -- 10.4 Chemically Modified CNTs in Photonics -- 10.4.1 Organic Photovoltaics (OPV) -- 10.4.2 Organic Light-Emitting Diodes (OLEDs) -- 10.4.3 Touch Panels -- 10.5 Summary and Future Scope -- References -- Chapter 11 Chemically Modified Carbon Nanotubes for Electrochemical Sensors -- 11.1 Introduction -- 11.2 Functionalization of Carbon Nanotubes Toward Sensors -- 11.2.1 Covalent Functionalization of CNTs Toward Sensing -- 11.2.2 Noncovalent Functionalization of CNTs Toward Sensing -- 11.2.3 Polymers Wrapping of CNTs Toward Sensing -- 11.2.4 CNTs Decorated with Metal Nanoparticles Toward Sensing -- 11.3 Electrochemical Sensing Applications of CNTs -- 11.3.1 CNT-Based Sensors for Environment Protection -- 11.3.2 CNT-Based Sensors for Pharmaceutical Applications -- 11.3.3 Monitoring of Biomolecular Compounds -- 11.3.3.1 Glucose Sensor -- 11.3.3.2 DNA Sensor -- 11.3.4 CNTs-Based Sensors for Real Sample Analysis -- 11.4 Summary and Outlook -- References -- Chapter 12 Chemically Modified Carbon Nanotubes for Lab on Chip Devices -- Abbreviations -- 12.1 Introduction -- 12.2 Allotropes of Carbon -- 12.2.1 Diamond -- 12.2.2 Graphite -- 12.2.3 Fullerenes -- 12.2.4 Carbon Nanotubes -- 12.2.4.1 SWCNT: Various Synthesis Methods -- 12.2.4.2 Growth Catalysts for SWCNT -- 12.2.4.3 Approach of Introducing the Catalyst on SWCNTs (CVD) Growth -- 12.2.5 Double-Walled Carbon Nanotubes (DWCNTs) -- 12.2.5.1 Development of DWCNTs.
Abstract:
Chemically Modified Carbon Nanotubes for Commercial Applications Discover the go-to handbook for developers and application-oriented researchers who use carbon nanotubes in real products Carbon nanotubes have held much interest for researchers since their discovery in 1991. Due to their low mass density, large aspect ratio, and unique physical, chemical, and electronic properties, they provide a fertile ground for innovation in nanoscale applications. The development of chemical modifications that can enhance the poor dispersion of carbon nanotubes in solvents and improve interactions with other materials have enabled extensive industrial applications in a variety of fields. As the chemistry of carbon nanotubes and their functionalization becomes better understood, Chemically Modified Carbon Nanotubes for Commercial Applications presents the most recent developments of chemically modified carbon nanotubes and emphasizes the broad appeal for commercial purposes along many avenues of interest. The book reviews their already realized and prospective applications in fields such as electronics, photonics, separation science, food packaging, environmental monitoring and protecting, sensing technology, and biomedicine. By focusing on their commercialization prospects, this resource offers a unique approach to a significant and cutting-edge discipline. In Chemically Modified Carbon Nanotubes for Commercial Applications readers will also find: Case studies that emphasize the information presented in each chapter Each chapter includes important websites and suggested reading materials Discussion of current applications of the relevant methodologies in every chapter A look at future perspectives in each application area to highlight the scope for next steps within the industry Chemically Modified Carbon Nanotubes for Commercial Applications is a valuable reference for material scientists, chemists (especially those focused on environmental concerns), and chemical and materials engineering scientists working in R&D and academia who want to learn more about chemically modified carbon nanotubes for various scalable commercial applications. It is also a useful resource for a broad audience: anyone interested in the fields of nanomaterials, nanoadsorbents, nanomedicine, bioinspired nanomaterials, nanotechnology, nanodevices, nanocomposites, biomedical application of nanomaterials, nano-engineering, and high energy applications.
Local Note:
John Wiley and Sons
Genre:
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527838790Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 598142-1001 | TA455 .C3 C445 2022 | Searching... | Searching... |
