
Title:
Biology of archaea. Volume 1, Discovery, evolution and diversity of archaea
Author:
Clouet-d'Orval, Béatrice, editor
ISBN:
9781394351848
9781394351831
Physical Description:
1 online resource (288 pages)
Series:
Sciences. Biology. Microbiology
Contents:
Preface xi Béatrice CLOUET-D'ORVAL, Bruno FRANZETTI and Philippe OGER -- Chapter 1. The Discovery of Archaea 1 Patrick FORTERRE -- 1.1. Introduction -- 1.2. Prokaryotic-eukaryotic dichotomy -- 1.3. Two domains for prokaryotes: archaebacteria and eubacteria -- 1.3.1. Ribosomal RNA as a molecular marker: a historical choice -- 1.3.2. Atypical ribosomal RNA of methanogenic "bacteria" -- 1.3.3. The concept of archaeobacteria -- 1.3.4. The grouping of halophilic and thermo-acidophilic "bacteria" with methanogens within archaeobacteria -- 1.4. The living trilogy -- 1.4.1. The concept of archaeobacteria confirmed by the uniqueness of their membrane phospholipids -- 1.4.2. German biochemists: champions of the archaeobacteria concept -- 1.4.3. The evolutionary link between archaeobacteria and eukaryotes and the introduction of the term archaea -- 1.5. Archaea and high-temperature living -- 1.5.1. The discovery of anaerobic hyperthermophilic archaea -- 1.5.2. The race for the thermophilia record -- 1.5.3. The discovery of viruses in hyperthermophilic archaea -- 1.6. Non-extremophilic archaea discovered by molecular ecology: a new vision of the third domain -- 1.7. Conclusion -- 1.8. References -- Chapter 2. Evolution of Archaea and Their Taxonomy 29 Patrick FORTERRE -- 2.1. Introduction -- 2.2. One domain, three major branches and a few isolated "phyla" -- 2.2.1. One domain, two phyla -- 2.2.2. A first orphaned phylum, the korarchaeota. -- 2.2.3. The first phylogenies based on conserved proteins -- 2.2.4. The special case of Methanopyrus kandleri -- 2.2.5. The special case of Nanoarchaeum equitans -- 2.2.6. Thaumarchaea -- 2.3. From phyla to superphyla -- 2.3.1. Metagenomics and the explosion in the number of archaeal phyla -- 2.3.2. The superphylum TACK -- 2.3.3. The DPANN -- 2.3.4. The Asgard archaea -- 2.3.5. Stygia/Hadarchaeota -- 2.3.6. Hydrothermarchaeota -- 2.4. Euryarchaea. -- 2.4.1. Group I Euryarchaea -- 2.4.2. Group II Euryarchaea. -- 2.5. A new nomenclature for the taxonomy of archaea? -- 2.6. Reconstructing the last common ancestor of archaea: LACA -- 2.6.1. Rooting the archaeal tree. -- 2.6.2. Two opposing visions of LACA: simple or complex -- 2.6.3. The likely hyperthermophilic nature of LACA. -- 2.6.4. The possibility of a methanogenic LACA -- 2.7. Conclusion -- 2.8. References -- Chapter 3. Archaea and the Tree of Life 89 Patrick FORTERRE -- 3.1. Introduction -- 3.2. The progenote concept -- 3.3. Archaea: prokaryotes related to eukaryotes -- 3.4. Rooting the universal tree -- 3.5. The nature of LUCA -- 3.5.1. A simpler LUCA compared to the organisms of the three current domains -- 3.5.2. An RNA genome for LUCA? -- 3.5.3. A presumably mesophilic LUCA -- 3.5.4. LUCA's proteome -- 3.6. The topology of the universal tree under debate -- 3.6.1. Early challenge to the Woese tree: the eocyte hypothesis -- 3.6.2. Searching for the archean ancestor of eukaryotes -- 3.6.3. Discovery of the Asgard archaea: validation of the 2D hypothesis? -- 3.6.4. Controversies over the position of Asgard archaea -- 3.7. The origin of new eukaryotic-like proteins discovered in Asgard archaea -- 3.8. Asgard archaea and the origin of eukaryotes -- 3.8.1. Asgard archaea at the origin of eukaryotes: a new paradigm -- 3.8.2. The inside-out model based on nanotubes discovered in Asgard archaea -- 3.8.3. The two-bacteria 2D model -- 3.8.4. The origin of eukaryotic cell complexity -- 3.9. The biological issues posed by the 2D model -- 3.10. Viruses and the universal tree of life -- 3.11. Conclusion -- 3.12. References -- Chapter 4. Archaea: Habitats and Associated Physiologies 153 Karine ALAIN, Marc COZANNET, Maxime ALLIOUX, Sarah THIROUX and Jordan HARTUNIANS -- 4.1. Introduction -- 4.2. Archaea of extreme habitats: extremophiles -- 4.2.1. Psychrophiles -- 4.2.2. Thermophiles/hyperthermophiles -- 4.2.3. Acidophiles -- 4.2.4. Alkalophiles -- 4.2.5. Halophiles -- 4.2.6. Piezophiles -- 4.2.7. Radiotolerant archaea -- 4.2.8. Poly-extremophilic archaea -- 4.2.9. Record-holding archaea -- 4.3. Archaea populating ordinary, non-extreme environments -- 4.3.1. Phytobiomes, rice paddies and peatlands -- 4.3.2. Aquatic habitats: lakes, oceans and estuaries -- 4.3.3. Environments linked to human activities: example of waste treatment and anaerobic digesters (methanizers) -- 4.3.4. Animal microbiomes -- 4.4. Archaea resistant to cultivation efforts -- 4.5. Challenges and success stories -- 4.6. Conclusion -- 4.7. References -- Chapter 5. Methanogenic Archaea 205 Tristan WAGNER, Laurent TOFFIN and Guillaume BORREL -- 5.1. Diversity of methanogens and their environments -- 5.1.1. Methane sources and sinks -- 5.1.2. Taxonomic and metabolic diversity -- 5.1.3. Ecological diversity of methanogens -- 5.2. Interactions of methanogens with their environment -- 5.2.1. Competition for substrates -- 5.2.2. Ecological and syntrophic interactions -- 5.2.3. Human-methanogen association -- 5.3. Bioenergetics and biochemistry of methanogenesis -- 5.3.1. Energy extremophiles -- 5.3.2. Cofactors used in methanogenesis -- 5.3.3. Different types of methanogenesis -- 5.3.4. MCR, the unique enzyme capable of generating biogenic methane -- 5.4. Anaerobic methanotrophs and anaerobic oxidation of multi-carbon alkanes -- 5.5. Evolution of methanogenesis -- 5.5.1. An ancestral metabolism -- 5.5.2. Metabolic adaptations -- 5.6. The impact of methanogens in our modern society -- 5.7. References -- Chapter 6. Hyperthermophilic Archaeal Viruses 247 Diana BAQUERO, Mart KRUPOVIC, Claire GESLIN and David PRANGISHVILI -- 6.1. Introduction -- 6.2. Morphological and structural diversity -- 6.2.1. Viruses with unique morphologies: families Ampullaviridae, Spiraviridae and Guttaviridae -- 6.2.2. Filamentous viruses: families Rudiviridae, Lipothrixviridae, Tristromaviridae and Clavaviridae -- 6.2.3. Spherical and icosahedral viruses: families Globuloviridae, Ovaliviridae, Portogloboviridae and Turriviridae -- 6.2.4. Fusiform viruses: families Fuselloviridae and Bicaudoviridae -- 6.3. Genomic features of hyperthermophilic archaeal viruses -- 6.3.1. Genome content -- 6.3.2. Structural genomics -- 6.4. Virus-host interactions -- 6.4.1. Virus entry -- 6.4.2. Virion egress -- 6.5. Conclusions -- 6.6. References -- List of Authors -- Index.
Abstract:
Archaea constitute a new branch of life alongside bacteria and eukaryotes. These microorganisms are unique in their cellular and molecular aspects. They have evolutionary links with the first eukaryotic cells and are now being used to elucidate fundamental biological questions. Champions of extremophilicity, archaea are helping to lift the veil on the limits of life on Earth. Biology of Archaea 1 explores the discovery and evolution of the field of archaea research. This book also looks at the evolutionary history of archaea and their integration into the tree of life, and examines this complex and extremely diverse world in terms of their ecological niches and their still largely unexplored virosphere.
Local Note:
John Wiley and Sons
Electronic Access:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394351848Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
|---|---|---|---|---|---|
Searching... | E-Book | 599723-1001 | QR82 .A69 | Searching... | Searching... |
