Cover image for Photonic imaging for biology : from conventional microscopy to super-resolution
Title:
Photonic imaging for biology : from conventional microscopy to super-resolution
Author:
Sibarita, Jean-Baptiste, editor.
ISBN:
9781394417896

9781394417872
Physical Description:
1 online resource (257 p.).
Series:
Sciences. IMAGE. Imagery in life sciences
General Note:
6.5. Computational-based methods
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Untitled -- Preface -- Chapter 1. Principles of Light Microscopy -- 1.1. Introduction -- 1.2. Principle of image formation -- 1.2.1. Geometric approach -- 1.2.2. Wave approach -- 1.2.3. Image formation under coherent light -- 1.2.4. Microscope resolution (diffraction-limited) -- 1.2.5. Abbe's theory of image formation -- 1.3. Optical sectioning techniques in fluorescence microscopy -- 1.3.1. Wide-field techniques -- 1.3.2. Point-scanning techniques -- 1.4. Conclusion -- 1.5. References

Chapter 2. Contrast-based Label-Free Imaging and Phase Measurement -- 2.1. Introduction, the biological object as an index object -- 2.2. Zernike phase contrast -- 2.2.1. Practical application and limitations -- 2.3. Differential interference contrast -- 2.3.1. Practical application and limitations -- 2.4. Other contrast methods with transparent objects -- 2.5. Measuring phase quantitatively: more than just contrast -- 2.6. Conclusions -- 2.7. References -- Chapter 3. Fluorophores and Labeling Methods for Fluorescence Microscopy -- 3.1. Introduction -- 3.2. Basics of fluorophore photophysics

3.3. Fluorescent proteins -- 3.4. Organic dyes -- 3.5. Conclusion -- 3.6. References -- Chapter 4. Quantitative FRAP and FCS -- 4.1. Life is motion -- 4.2. FRAP -- 4.2.1. Basics of FRAP -- 4.2.2. Quantitative principles of single spot FRAP -- 4.2.3. Analytical expression for principal origins of fluorescence recoveries -- 4.2.4. Variable radii FRAP -- 4.2.5. Quantitative imaging FRAP -- 4.2.6. Fluorescence loss in photobleaching -- 4.2.7. Photoactivation/photoconversion -- 4.3. FCS -- 4.3.1. Basic principle of correlation spectroscopy -- 4.3.2. Mathematics of FCS

4.3.3. Analytical expression for different origins of concentration fluctuations -- 4.3.4. Space and time correlation spectroscopy -- 4.4. Conclusion -- 4.5. References -- Chapter 5. Single-Particle Tracking for Nanoscale Dynamics of Biological Samples -- 5.1. Introduction -- 5.2. Nanoscale localization -- 5.3.Trajectory reconstruction -- 5.4. Nanoscale dynamics -- 5.4.1. Basic properties of Brownian motion -- 5.4.2. Quantification of experimental trajectories -- 5.4.3. Time-variable diffusion -- 5.4.4. Beyond Brownian motion: anomalous diffusion -- 5.5. References

Chapter 6. In Depth Microscopy -- 6.1. Introduction -- 6.2. Confocal microscopy -- 6.2.1. Principle -- 6.2.2. Spinning disk confocal microscopy -- 6.2.3. Limitations -- 6.2.4. Photon reassignment approaches -- the new confocal systems -- 6.3. Multi-photon microscopy -- 6.3.1. Principle -- 6.3.2. Laser-scanning multi-photon microscopy optical setup -- 6.3.3. Widefield multi-photon microscopy by temporal focusing -- 6.4. Light-sheet fluorescence microscopy -- 6.4.1. Principles and advantages -- 6.4.2. Light-sheet creation and properties -- 6.4.3. Main implementation overview
Abstract:
Light microscopy is a central tool in biological research, allowing scientists to observe living cells and organisms with details invisible to the naked eye.Since its inception in the 17th century, it has evolved through key innovations in optics, staining, electronics and informatics.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 600226-1001 QH205.2 .S53 2025
Searching...

On Order