Title:
High Pressure Bioscience Basic Concepts, Applications and Frontiers
Author:
Akasaka, Kazuyuki. editor.
ISBN:
9789401799188
Edition:
1st ed. 2015.
Physical Description:
XVII, 730 p. 264 illus., 155 illus. in color. online resource.
Series:
Subcellular Biochemistry, 72
Contents:
Part I Why and How Proteins Denature under Pressure? -- 1 Early Days of Pressure Denaturation Studies of Proteins -- 2 Protein Denaturation on p-T Axes - Thermodynamics and Analysis -- 3 Driving Forces in Pressure-induced Protein Transitions -- 4 Why and How Does Pressure Unfold Proteins? -- Part II Volume, Compressibility, Fluctuation and Interaction in Proteins -- 5 Volume and Compressibility of Proteins -- 6 Pressure-Dependent Conformation and Fluctuation in Folded Protein Molecules -- 7 Water Turns the "Non-Biological" Fluctuation of Protein into "Biological" One -- 8 Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions -- Part III Pressure and Functional Sub-States in Proteins -- 9 High Pressure NMR Methods for Characterizing Functional Sub-States of Proteins -- 10 High-Pressure NMR Spectroscopy Reveals Functional Sub-States of Ubiquitin and Ubiquitin-Like Proteins -- 11 Functional Sub-States of Proteins by Macromolecular Crystallography -- 12 Cavities and Excited States in Proteins -- Part IV Pressure and Protein Folding and Assembly -- 13 Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetic Studies -- 14 Basic Equations in Statics and Kinetics of Protein Polymerization and the Mechanism of the Formation and Dissociation of Amyloid Fibrils Revealed by Pressure Perturbation -- 15 Pressure-Inactivated Virus: a Promising Alternative for Vaccine Production -- Part V Pressure Effects on Biological Membranes -- 16 How Do Membranes Respond to Pressure? -- 17 Pressure Effects on Artificial and Cellular Membranes -- 18 Effects of High Hydrostatic Pressure on Microbial Cell Membranes: Structural and Functional Perspectives -- 19 Homeoviscous Adaptation of Membranes in Archaea -- Part VI Pressure adaptation and tolerance of proteins and living organisms -- 20 Pressure-Dependent Gene Activation in Yeast Cells -- 21Environmental Adaptation of Dihydrofolate Reductase from Deep-Sea Bacteria -- 22 Moss Spores Can Tolerate Ultra-High Pressure -- Part VII High pressure food processing and pasteurization -- 23 Pressure-Based Strategy for the Inactivation of Spores -- 24 Use of Pressure Activation in Food Quality Improvement -- 25 Use of Pressure for Improving Storage Quality of Fresh-Cut Produce -- 26 Application of High-Pressure Treatment to Enhancement of Functional Components in Agricultural Products and Development of Sterilized Foods -- Part VIII Pressure Effects on Motility, Physiology and Health -- 27 High-Pressure Microscopy for Studying Molecular Motor -- 28 Ion Channels Activated by Mechanical Forces in Bacterial and Eukaryotic Cells -- 29 Gravitational Effects on Human Physiology -- Part IX Methodology -- 30 High Pressure Small-Angle X-Ray Scattering -- 31 High Pressure Macromolecular Crystallography -- 32 High-Pressure Fluorescence Spectroscopy up to 700 MPa -- 33 High Pressure NMR Spectroscopy.
Added Corporate Author:
Electronic Access:
https://doi.org/10.1007/978-94-017-9918-8Copies:
Available:*
Library | Material Type | Item Barcode | Shelf Number | Status | Item Holds |
---|---|---|---|---|---|
Searching... | E-Book | 529953-1001 | ONLINE | Searching... | Searching... |