Cover image for Subset selection in regression
Title:
Subset selection in regression
Author:
Miller, Alan J.
ISBN:
9781420035933
Edition:
2nd ed.
Publication Information:
Boca Raton : Chapman & Hall/CRC, c2002.
Physical Description:
xvii, 238 p. : ill.
Series:
Monographs on statistics and applied probability ; 95
Series Title:
Monographs on statistics and applied probability ; 95
Contents:
Machine generated contents note: 1 Objectives -- 1.1 Prediction, explanation, elimination or what? -- 1.2 How many variables in the prediction formula? -- 1.3 Alternatives to using subsets -- 1.4 'Black box' use of best-subsets techniques -- 2 Least-squares computations -- 2.1 Using sums of squares and products matrices -- 2.2 Orthogonal reduction methods -- 2.3 Gauss-Jordan v. orthogonal reduction methods -- 2.4 Interpretation of projections -- Appendix A. Operation counts for all-subsets regression -- A.1 Garside's Gauss-Jordan algorithm -- A.2 Planar rotations and a Hamiltonian cycle -- A.3 Planar rotations and a binary sequence -- A.4 Fast planar rotations -- 3 Finding subsets which fit well -- 3.1 Objectives and limitations of this chapter -- 3.2 Forward selection -- 3.3 Efroymson's algorithm -- 3.4 Backward elimination -- 3.5 Sequential replacement algorithms -- 3.6 Replacing two variables at a time -- 3.7 Genierating all subsets -- 3.8 Using branch-and-bound techniques -- 3.9 Grouping variables -- 3.10 Ridge regression and other alternatives -- 3.11 The nonnegative garrote and the lasso -- 3.12 Some examples -- 3.13 Conclusions and recommendations -- Appendix A. An algorithm for the lasso -- 4 Hypothesis testing -- 4.1 Is there any information in the remaining variables? -- 4.2 Is one subset better than another? -- 4.2.1 Applications of Spj-tvoll's method -- 4.2.2 Using other confidence ellipsoids -- Appendix A.Spjotvoll's method - detailed description -- 5 When to stop? -- 5.1 What criterion should we use? -- 5.2 Prediction criteria -- 5.2.1 Mean squared errors of prediction (MSEP) -- 5.2.2 MSEP for the fixed model -- 5.2.3 MSEP for the random model -- 5.2.4 A simulation with random predictors -- 5.3 Cross-validation and the P SS statistic -- 5.4 Bootstrapping -- 5.5 Likelihood and information-based stopping rules -- 5.5.1 Minimum description length (MDL) -- Appendix A. Approximate equivaence of stppingules -- A.1 F-to-enter -- A.2 Adjusted R2 or Fisher's A-statistic -- A.3 Akaikesinformatibn criterion (AIC) -- 6 Estatmaion of regression eficients -- 6.1 Selection bias -- 6.2 Choice between two varies -- 6.3 Selection reduction -- 6.3.1 Monte C o et tionfias i f d lection -- 6.3.2 Shrinkage methods -- 6.3.3 Using the jack-knife -- 6.3.4 Independent; data sets ; -- 6.4 Conditional likiood estimations -- 6.5 Estimationofpopulation means -- 6.6 Estimating least-squares projections ; -- Appendix A. Changing projections to equate sums of squares -- 7 Bayesian methods -- 7.1 Bayesian introduction -- 7.2 'Spike and slab'prior -- 7.3 Normal prior for regression coefficients -- 7.4 Model averaging -- 7.5 Picking the best model -- 8 Conclusions and some recommendations -- References -- Index.
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 288569-1001 ONLINE
Searching...

On Order