Cover image for Atomically precise nanochemistry
Title:
Atomically precise nanochemistry
Author:
Jin, Rongchao, editor.
ISBN:
9781119788652

9781119788683

9781119788676
Physical Description:
1 online resource (xvii, 528 pages) : illustrations
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction to Atomically Precise Nanochemistry -- 1.1 Why Atomically Precise Nanochemistry? -- 1.1.1 Motivations from Nanoscience Research -- 1.1.2 Motivations from Inorganic Chemistry Research -- 1.1.3 Motivations from Gas Phase Cluster Research -- 1.1.4 Motivations from Other Areas -- 1.2 Types of Nanoclusters Covered in This Book -- 1.2.1 Atomically Precise Metal Nanoclusters (Au, Ag, Cu, Ni, Rh) -- 1.2.2 Endohedral Fullerenes and Graphene Nanoribbons -- 1.2.3 Zintl Clusters -- 1.2.4 Metal-Oxo Nanoclusters -- 1.3 Some Fundamental Aspects -- 1.3.1 Synthesis and Crystallization -- 1.3.2 Structural and Bonding Patterns -- 1.3.3 Transition from Nonmetallic to Metallic State: Emergence of Plasmon -- 1.3.4 Transition from Metal Complexes to the Cluster State: Emergence of Core -- 1.3.5 Doping and Alloying -- 1.3.6 Redox and Magnetism -- 1.3.7 Energy Gap Engineering -- 1.3.8 Assembly of Atomically Precise Nanoclusters -- 1.4 Some Applications -- 1.4.1 Chemical and Biological Sensing -- 1.4.2 Biomedical Imaging, Drug Delivery, and Therapy -- 1.4.3 Antibacteria -- 1.4.4 Solar Energy Conversion -- 1.4.5 Catalysis -- 1.5 Concluding Remarks -- Acknowledgment -- References -- Chapter 2 Total Synthesis of Thiolate-Protected Noble Metal Nanoclusters -- 2.1 Introduction -- 2.2 Size Engineering of Metal Nanoclusters -- 2.2.1 Size Engineering by Reduction-Growth Strategy -- 2.2.2 Size Engineering by Size Conversion Strategy -- 2.3 Composition Engineering of Metal Nanoclusters -- 2.3.1 Metal Composition Engineering -- 2.3.2 Ligand Composition Engineering -- 2.4 Structure Engineering of Metal Nanoclusters -- 2.4.1 Pseudo-Isomerization -- 2.4.2 Isomerization -- 2.5 Top-Down Etching Reaction of Metal Nanoclusters -- 2.6 Conclusion and Outlooks -- Contributions.

4.3.3 Atomic Structures of Au27(SH)20-, Au32(SR)21-, Au34(SR)23-, and Au36(SR)25- -- 4.4 Structural Design via Structural Evolution -- 4.4.1 A Brief Introduction of the Idea -- 4.4.2 Atomic Structures of Au60(SR)36, Au68(SR)40, and Au76(SR)44 -- 4.4.3 Atomic Structure of Au58(SR)30 -- 4.5 Structural Design via Grand Unified Model -- 4.5.1 A Brief Introduction of the Idea -- 4.5.2 Atomic Structures of Hollow Au36(SR)12 and Au42(SR)14 -- 4.5.3 Atomic Structures of Au28(SR)20 -- 4.6 Conclusion and Perspectives -- Acknowledgment -- References -- Chapter 5 Electrocatalysis on Atomically Precise Metal Nanoclusters -- 5.1 Introduction -- 5.1.1 Materials Design Strategy for Electrocatalysis -- 5.1.2 Atomically Precise Metal Nanoclusters as Electrocatalysts -- 5.2 Electrochemistry of Atomically Precise Metal Nanoclusters -- 5.2.1 Size-Dependent Voltammetry -- 5.2.2 Metal-Doped Gold Nanoclusters -- 5.2.3 Metal-Doped Silver Nanoclusters -- 5.3 Electrocatalytic Water Splitting on Atomically Precise Metal Nanoclusters -- 5.3.1 Hydrogen Evolution Reaction: Core Engineering -- 5.3.2 Hydrogen Evolution Reaction: Shell Engineering -- 5.3.3 Hydrogen Evolution Reaction on Ag Nanoclusters -- 5.3.4 Oxygen Evolution Reaction -- 5.4 Electrocatalytic Conversion of CO2 on Atomically Precise Metal Nanoclusters -- 5.4.1 Mechanistic Investigation of CO2RR on Au Nanoclusters -- 5.4.2 Identification of CO2RR Active Sites -- 5.4.3 CO2RR on Cu Nanoclusters -- 5.4.4 Syngas Production on Formulated Metal Nanoclusters -- 5.5 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 6 Atomically Precise Metal Nanoclusters as Electrocatalysts: From Experiment to Computational Insights -- 6.1 Introduction -- 6.2 Factors Affecting the Activity and Selectivity of NCs Electrocatalysis -- 6.2.1 Size Effect -- 6.2.2 Shape Effect -- 6.2.3 Ligands Effect.

6.2.3.1 Different -R Groups in Thiolate Ligands -- 6.2.3.2 Different Types of Ligands -- 6.2.3.3 Ligand-on and -off Effect -- 6.2.4 Charge State Effect -- 6.2.5 Doping and Alloying Effect -- 6.3 Important Electrocatalytic Applications -- 6.3.1 Electrocatalytic Water Splitting -- 6.3.1.1 Water Electrolysis Process -- 6.3.1.2 Cathodic Water Reduction-HER -- 6.3.1.3 Anodic Water Oxidation-OER -- 6.3.2 Oxygen Reduction Reaction (ORR) -- 6.3.3 Electrochemical CO2 Reduction Reaction (CO2RR) -- 6.4 Conclusion and Perspectives -- Acknowledgments -- References -- Chapter 7 Ag Nanoclusters: Synthesis, Structure, and Properties -- 7.1 Introduction -- 7.2 Synthetic Methods -- 7.2.1 One-Pot Synthesis -- 7.2.2 Ligand Exchange -- 7.2.3 Chemical Etching -- 7.2.4 Seeded Growth Method -- 7.3 Structure of Ag NCs -- 7.3.1 Based on Icosahedral Units' Assembly -- 7.3.2 Based on Ag14 Units' Assembly -- 7.3.3 Other Special Ag NCs -- 7.4 Properties of Ag NCs -- 7.4.1 Chirality of Ag NCs -- 7.4.2 Photoluminescence of Ag NCs -- 7.4.3 Catalytic Properties of Ag NCs -- 7.5 Conclusion and Perspectives -- Acknowledgment -- References -- Chapter 8 Atomically Precise Copper Nanoclusters: Syntheses, Structures, and Properties -- 8.1 Introduction -- 8.2 Syntheses of Copper NCs -- 8.2.1 Direct Synthesis -- 8.2.2 Indirect Synthesis: Nanocluster-to-Nanocluster Transformation -- 8.3 Structures of Copper NCs -- 8.3.1 Superatom-like Copper NCs without Hydrides -- 8.3.2 Superatom-like Copper NCs with Hydrides -- 8.3.3 Copper(I) Hydride NCs -- 8.3.3.1 Determination of Hydrides -- 8.3.3.2 Copper(I) Hydride NCs Determined by Single-Crystal Neutron Diffraction -- 8.3.3.3 Copper(I) Hydride NCs Determined by Single-Crystal X-ray Diffraction -- 8.4 Properties -- 8.4.1 Photoluminescence of Copper NCs -- 8.4.1.1 Aggregation-Induced Emission -- 8.4.1.2 Circularly Polarized Luminescence (CPL).

8.4.2 Catalytic Properties of Copper NCs -- 8.4.2.1 Reduction of CO2 -- 8.4.2.2 "Click" Reaction -- 8.4.2.3 Hydrogenation -- 8.4.2.4 Carbonylation Reactions -- 8.4.3 Other Properties -- 8.4.3.1 Hydrogen Storage -- 8.4.3.2 Electronic Devices -- 8.5 Summary Comparison with Gold and Silver NCs -- 8.6 Conclusion and Perspectives -- References -- Chapter 9 Atomically Precise Nanoclusters of Iron, Cobalt, and Nickel: Why Are They So Rare? -- 9.1 Introduction -- 9.2 General Considerations -- 9.3 Synthesis of Ni APNCs -- 9.4 Synthesis of Co APNCs -- 9.5 Attempted Synthesis of Fe APNCs -- 9.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 10 Atomically Precise Heterometallic Rhodium Nanoclusters Stabilized by Carbonyl Ligands -- 10.1 Introduction -- 10.1.1 Metal Carbonyl Clusters: A Brief Historical Overview -- 10.1.2 State of the Art on Rhodium Carbonyl Clusters -- 10.2 Synthesis of Heterometallic Rhodium Carbonyl Nanoclusters -- 10.2.1 Synthesis of the [Rh12E(CO)27]n. Family of Nanoclusters -- 10.2.2 Growth of Rhodium Heterometallic Nanoclusters -- 10.2.2.1 Rh-Ge Nanoclusters -- 10.2.2.2 Rh-Sn Nanoclusters -- 10.2.2.3 Rh-Sb Nanoclusters -- 10.2.2.4 Rh-Bi Nanoclusters -- 10.3 Electron-Reservoir Behavior of Heterometallic Rhodium Nanoclusters -- 10.4 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Endohedral Fullerenes: Atomically Precise Doping Inside Nano Carbon Cages -- 11.1 Introduction -- 11.2 Synthesis of Endohedral Metallofullerenes -- 11.3 Fullerene Structures Tuned by Endohedral Doping -- 11.3.1 Geometry of Empty and Endohedral Fullerene Cage Structures -- 11.3.2 Conventional Endohedral Metallofullerenes -- 11.3.2.1 Mono-Metallofullerens -- 11.3.2.2 Di-Metallofullerenes -- 11.3.3 Clusterfullerenes -- 11.3.3.1 Nitride Clusterfullerenes -- 11.3.3.2 Carbide Clusterfullerenes.
Abstract:
"This book summarizes recent progress in the development of atomically precise nanochemistry and will be an important state-of-the-art reference for the broad communities of nanoscience and cluster science, ranging from chemistry, physics, biology, materials science, to engineering. The book is divided into six parts, each covering a different type of nanocluster: metal nanoclusters (Au, Ag, Pd, Pt, Al, alloys),, semiconductor nanoclusters (CdSe, ZnS, InAs), metal-oxo systems (Mo-O, Ti-O, W-O), large-sized organometallic nano-architectures, carbon clusters (fullerenes, small nanoribbons), and supramolecular architectures. For each type of nanocluster, chapters cover experimental aspects - synthesis, structure and applications - and theory - electronic structure, geometry, and bonding ? with a focus on structure-property relationships throughout the book."-- Provided by publisher.
Local Note:
John Wiley and Sons
Holds:
Copies:

Available:*

Library
Material Type
Item Barcode
Shelf Number
Status
Item Holds
Searching...
E-Book 598137-1001 QC176.8 .N35
Searching...

On Order