Machine Learning in Radiation Oncology Theory and Applications
tarafından
 
El Naqa, Issam. editor.

Başlık
Machine Learning in Radiation Oncology Theory and Applications

Yazar
El Naqa, Issam. editor.

ISBN
9783319183053

Basım Bilgisi
1st ed. 2015.

Fiziksel Tanımlama
XIV, 336 p. 127 illus., 67 illus. in color. online resource.

İçerik
Introduction: What is Machine Learning -- Computational Learning Theory -- Overview of Supervised Learning Methods -- Overview of Unsupervised Learning Methods -- Performance Evaluation -- Variety of Applications in Radiation Oncology -- Machine Learning for Quality Assurance: Quality Assurance as a Learning Problem -- Detection of Radiotherapy Errors Using Unsupervised Learning -- Prediction of Radiotherapy Errors Using Supervised Learning -- Machine Learning for Computer-Aided Detection: Detection of Cancer Lesions from Imaging -- Classification of Malignant and Benign Tumours -- Machine Learning for Treatment Planning and Delivery -- Image-guided Radiotherapy with Machine Learning: IMRT Optimization Using Machine Learning -- Treatment Assessment Tools -- Machine Learning for Motion Management: Prediction of Respiratory Motion -- Motion-Correction Using Learning Methods -- Machine Learning Application in 4D-CT -- Machine Learning Application in Dynamic Delivery -- Machine Learning for Outcomes Modeling: Bioinformatics of Treatment Response -- Modelling of Norma Tissue Complication Probabilities (NTCP) -- Modelling of Tumour Control Probability (TCP).

Yazar Ek Girişi
El Naqa, Issam.
 
Li, Ruijiang.
 
Murphy, Martin J.

Tüzel Kişi Ek Girişi
SpringerLink (Online service)

Elektronik Erişim
https://doi.org/10.1007/978-3-319-18305-3


KütüphaneMateryal TürüDemirbaş NumarasıYer Numarası[[missing key: search.ChildField.HOLDING]]Durumu/İade Tarihi
Çevrimiçi KütüphaneE-Kitap519567-1001ONLINEElektronik Kütüphane