Elements of Dimensionality Reduction and Manifold Learning
tarafından
 
Ghojogh, Benyamin. author.

Başlık
Elements of Dimensionality Reduction and Manifold Learning

Yazar
Ghojogh, Benyamin. author.

ISBN
9783031106026

Basım Bilgisi
1st ed. 2023.

Fiziksel Tanımlama
XXVIII, 606 p. 59 illus., 32 illus. in color. online resource.

İçerik
Chapter 1: Introduction -- Part 1: Preliminaries and Background -- Chapter 2: Background on Linear Algebra -- Chapter 3: Background on Kernels -- Chapter 4: Background on Optimization -- Part 2: Spectral dimensionality Reduction -- Chapter 5: Principal Component Analysis -- Chapter 6: Fisher Discriminant Analysis -- Chapter 7: Multidimensional Scaling, Sammon Mapping, and Isomap -- Chapter 8: Locally Linear Embedding -- Chapter 9: Laplacian-based Dimensionality Reduction -- Chapter 10: Unified Spectral Framework and Maximum Variance Unfolding -- Chapter 11: Spectral Metric Learning -- Part 3: Probabilistic Dimensionality Reduction -- Chapter 12: Factor Analysis and Probabilistic Principal Component Analysis -- Chapter 13: Probabilistic Metric Learning -- Chapter 14: Random Projection -- Chapter 15: Sufficient Dimension Reduction and Kernel Dimension Reduction -- Chapter 16: Stochastic Neighbour Embedding -- Chapter 17: Uniform Manifold Approximation and Projection (UMAP) -- Part 4: Neural Network-based Dimensionality Reduction -- Chapter 18: Restricted Boltzmann Machine and Deep Belief Network -- Chapter 19: Deep Metric Learning -- Chapter 20: Variational Autoencoders -- Chapter 21: Adversarial Autoencoders.

Yazar Ek Girişi
Crowley, Mark.
 
Karray, Fakhri.
 
Ghodsi, Ali.

Tüzel Kişi Ek Girişi
SpringerLink (Online service)

Elektronik Erişim
https://doi.org/10.1007/978-3-031-10602-6


KütüphaneMateryal TürüDemirbaş NumarasıYer Numarası[[missing key: search.ChildField.HOLDING]]Durumu/İade Tarihi
Çevrimiçi KütüphaneE-Kitap520657-1001ONLINEElektronik Kütüphane