1. Welcome to Lorentz-Minkowski Space. 1.1. Pseudo-Euclidean Spaces. 1.2. Subspaces of RQe. 1.3. Contextualization in Special Relativity. 1.4. Isometries in RQe. 1.5. Investigating O1(2, R) And O1(3, R). 1.6 Cross Product in RQe. 2. Local Theory of Curves. 2.1. Parametrized Curves in RQe. 2.2. Curves in the Plane. 2.3. Curves in Space. 3. Surfaces in Space. 3.1. Basic Topology of Surfaces. 3.2. Casual type of Surfaces, First Fundamental Form. 3.3. Second Fundamental Form and Curvatures. 3.4. The Diagonalization Problem. 3.5. Curves in Surface. 3.6. Geodesics, Variational Methods and Energy. 3.7. The Fundamental Theorem of Surfaces. 4. Abstract Surfaces and Further Topics. 4.1. Pseudo-Riemannian Metrics. 4.2. Riemann's Classification Theorem. 4.3. Split-Complex Numbers and Critical Surfaces. 4.4 Digression: Completeness and Causality
| Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | [[missing key: search.ChildField.HOLDING]] | Durumu/İade Tarihi |
|---|---|---|---|---|---|
| Çevrimiçi Kütüphane | E-Kitap | 554625-1001 | QA641 | Taylor Fransic E-Kitap Koleksiyonu |