Hybrid nanomaterials : advances in energy, environment and polymer nanocomposites
tarafından
Srivastava, Suneel Kumar, 1954- editor.
Başlık
:
Hybrid nanomaterials : advances in energy, environment and polymer nanocomposites
Yazar
:
Srivastava, Suneel Kumar, 1954- editor.
ISBN
:
9781119160359
9781119160366
9781119160380
Fiziksel Tanımlama
:
1 online resource
Genel Not
:
Includes index.
İçerik
:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Hybrid Nanostructured Materials for Advanced Lithium Batteries -- 1.1 Introduction -- 1.2 Battery Requirements -- 1.2.1 Primary and Secondary Batteries -- 1.2.2 Battery Market -- 1.3 Survey of Rechargeable Batteries -- 1.4 Advanced Materials for Electrodes -- 1.4.1 Benefits and Limitations of Nanostructured Battery Materials -- 1.4.2 Hybrid Materials as Anodes -- 1.4.3 Hybrid Materials as Cathodes -- 1.5 Future Battery Strategies -- 1.5.1 Post Lithium-Ion Batteries -- 1.5.2 Lithium-Sulfur Batteries -- 1.5.3 Lithium-Air Batteries -- 1.5.3.1 Non-Aqueous Li-Air Battery -- 1.5.3.2 Aqueous Li-Air Battery -- 1.6 Limitations of Existing Strategies -- 1.7 Conclusions -- Acknowledgments -- References -- 2 High Performing Hybrid Nanomaterials for Supercapacitor Applications -- 2.1 Introduction -- 2.2 Scope of the Chapter -- 2.3 Characterization of Hybrid Nanomaterials -- 2.3.1 Morphological Characterization -- 2.3.2 Structural Characterization -- 2.3.3 Electrical and Electrochemical Properties -- 2.4 Hybrid Nanomaterials as Electrodes for Supercapacitor -- 2.4.1 Graphene Hybrid -- 2.4.2 Nanostructured Metal Oxide-Sulphide Hybrids -- 2.4.3 Conducting Polymer Hybrid -- 2.4.4 Carbon Balck and Carbon Fiber Hybrid -- 2.4.5 Carbon Nanotube and Fullerene Hybrid -- 2.5 Applications of Supercapacitor -- 2.5.1 Energy Storage Smart Grid -- 2.5.2 Cold Start and Transportation -- 2.5.3 Emergency Power -- 2.5.3.1 Windmills -- 2.5.3.2 Emergency Door -- 2.5.3.3 Digital Cameras -- 2.5.3.4 Wireless Systems and Burst-Mode Communications -- 2.5.3.5 Toys -- 2.5.4 Strategic Sector -- 2.5.5 UPS and Inverter -- 2.5.6 Others -- 2.6 Conclusions -- References -- 3 Nanohybrid Materials in the Development of Solar Energy Applications -- 3.1 Introduction -- 3.2 Significance of Nanohybrid Materials.
3.2.1 Use of Nanostructured Materials -- 3.2.2 Materials and Band Gap Engineering -- 3.2.2.1 Binary Metal Chalcogenides -- 3.2.2.2 Binary Metal Oxides -- 3.2.3 Types of Hybrid Materials -- 3.2.3.1 Core-Shell Nanoheterostructures -- 3.2.3.2 Carbon-Based Hybrid Nanostructure -- 3.2.3.3 Polymer-Based Hybrid Nanostructure -- 3.3 Synthetic Strategies -- 3.3.1 Hot-Injection Method -- 3.3.2 Hydrothermal/Solvothermal Method -- 3.3.3 Electrochemical Anodization -- 3.3.4 Chemical Vapor Deposition -- 3.4 Application in Solar Energy Conversion -- 3.4.1 Photocatalysis -- 3.4.2 Photoelectrochemical Water Splitting -- 3.4.3 Photovoltaic Devices -- 3.4.3.1 Dye-Sensitized Solar Cells -- 3.4.3.2 Quantum Dot-Sensitized Solar Cells -- 3.4.3.3 Si-Based Solar Cells -- 3.5 Summary -- References -- 4 Hybrid Nanoadsorbents for Drinking Water Treatment: A Critical Review -- 4.1 Introduction -- 4.2 Status and Health Effects of Different Pollutants -- 4.3 Removal Technologies -- 4.4 Hybrid Nanoadsorbent -- 4.4.1 Synthesis of Material -- 4.4.2 Application of Hybrid Nanoadsorbents -- 4.4.2.1 Arsenic -- 4.4.2.2 Fluoride -- 4.4.2.3 Heavy Metals -- 4.5 Issues and Challenges -- 4.6 Conclusions -- References -- 5 Advanced Nanostructured Materials in Electromagnetic Interference Shielding -- 5.1 Introduction -- 5.2 Theoretical Aspect of EMI Shielding -- 5.3 Experimental Methods in Measuring Shielding Effectiveness -- 5.4 Carbon Allotrope-Based Polymer Nanocomposites -- 5.4.1 Carbon Fiber-Filled Polymer Nanocomposites -- 5.4.2 CNT-Filled Polymer Nanocomposites -- 5.4.3 Graphene and Graphene Oxide Fillers-Based Polymer Nanocomposites -- 5.5 Intrinsically Conducting Polymer (ICP) Derived Nanocomposites -- 5.5.1 PANI in EMI Shielding Applications -- 5.5.2 PPy in EMI Shielding Applications -- 5.5.3 Core-Shell Morphology in EMI Shielding -- 5.6 Summary -- Acknowledgement -- References.
6 Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants -- 6.1 Introduction -- 6.2 Hybrid Nanomaterials: Smart Material for Sensing Environmental Pollutants -- 6.3 Synthesis Methods of Hybrid Nanomaterials -- 6.3.1 Sol-Gel Method -- 6.3.2 Hydrothermal Methods -- 6.3.3 Layer-by-Layer Deposition Method -- 6.3.4 Template-Assisted Synthesis of Hybrid Materials -- 6.3.5 Physical Vapor Deposition -- 6.3.6 Gas-Sensing Principle of Hybrid Nanomaterials -- 6.4 Basic Mechanism of Gas Sensors Using Hybrid Nanomaterials -- 6.5 Hybrid Nanomaterials-Based Conductometric Gas Sensors for Environmental Monitoring -- 6.5.1 Hybrid Nanomaterials for Volatile Organic Components -- 6.5.2 Hybrid Nanomaterials for Ammonia Detection -- 6.5.3 Hybrid Nanomaterials for Hydrogen Detection -- 6.5.4 Hybrid Nanomaterials for Nitrous Oxide Detection -- 6.6 Conclusion -- References -- 7 Development of Hybrid Fillers/Polymer Nanocomposites for Electronic Applications -- 7.1 Introduction -- 7.2 Factors Influencing the Properties of Filler/Polymer Composite -- 7.3 Hybridization of Fillers in Polymer Composites -- 7.4 Hybrid Fillers in Polymer Nanocomposites -- 7.5 Fabrication Methods of Hybrid Fillers/Polymer Composites -- 7.6 Applications of Hybrid Fillers/Polymer Composites -- References -- 8 High Performance Hybrid Filler Reinforced Epoxy Nanocomposites -- 8.1 Introduction -- 8.2 Reinforcing Fillers -- 8.3 Necessity of Hybrid Filler Systems -- 8.4 Epoxy Resin -- 8.5 Preparation of Hybrid Filler/Epoxy Nanocomposites -- 8.6 Characterization of Hybrid Filler/Epoxy Polymer Composites -- 8.7 Properties of the Hybrid Filler/Epoxy Nanocomposites -- 8.7.1 Hybrid Fillers Based on CNT, GNP and GO -- 8.7.2 Hybrid Fillers Based on CB, CF, CNT and Graphene -- 8.7.3 Hybrid Fillers Based on Clay, CB, CNT and Glass Fibers.
8.7.4 Hybrid Fillers Based on Ceramic Powder, CNT and GNP -- 8.7.5 Hybrid Fillers Based on Silica Particle Modified Graphene and CNTs -- 8.7.6 Hybrid Fillers Based on LDHs, Organohydroxide, MoS2, and Graphene -- 8.7.7 Hybrid Fillers Based on Silicate and Liquid Rubber -- 8.8 Summary and Future Prospect -- References -- 9 Recent Developments in Elastomer/Hybrid Filler Nanocomposites -- 9.1 Introduction -- 9.2 Preparation Methods of Elastomer Nanocomposites -- 9.2.1 In-situ Polymerization -- 9.2.2 Solution Mixing -- 9.2.3 Melt Intercalation Method -- 9.3 Hybrid Fillers in Elastomer Nanocomposites -- 9.3.1 Dispersion of Hybrid Fillers in Elastomer Nanocomposites -- 9.3.2 Dispersion of Hybrid Fillers in PU Nanocomposites -- 9.3.3 Dispersion of Hybrid Fillers in SR Nanocomposites -- 9.3.4 Dispersion of Hybrid Fillers in NR Nanocomposites -- 9.3.5 Dispersion of Hybrid Fillers in SBR, NBR, EPDM and EVA Nanocomposites -- 9.4 Mechanical Properties of Hybrid Filler Incorporated Elastomer Nanocomposites -- 9.4.1 Mechanical Properties of Hybrid Filler Incorporated PU Nanocomposites -- 9.4.2 Mechanical Properties of Hybrid Filler Incorporated SR Nanocomposites -- 9.4.3 Mechanical Properties of Hybrid Filler Incorporated NR Nanocomposites -- 9.4.4 Mechanical Properties of Hybrid Filler Incorporated SBR, NBR, EPDM and EVA Nanocomposites -- 9.5 Dynamical Mechanical Analysis (DMA) of Elastomer Nanocomposites -- 9.5.1 DMA of Hybrid Filler Incorporated PU Nanocomposites -- 9.5.2 DMA of Hybrid Filler Incorporated SR Nanocomposites -- 9.5.3 DMA of Hybrid Filler Incorporated NR Nanocomposites -- 9.5.4 DMA of Hybrid Filler Incorporated SBR, NBR, EPDM Nanocomposites -- 9.6 Thermogravimetric Analysis (TGA) of Hybrid Filler Incorporated Elastomer Nanocomposites -- 9.6.1 TGA of Hybrid Filler Incorporated PU Nanocomposites.
9.6.2 TGA of Hybrid Filler Incorporated SR Nanocomposites -- 9.6.3 TGA of Hybrid Filler Incorporated NR Nanocomposites -- 9.6.4 TGA of Hybrid Filler Incorporated SBR, NBR, EPDM and EVA Nanocomposites -- 9.7 Differential Scanning Calorimetric (DSC) Analysis of Hybrid Filler Incorporated Elastomer Nanocomposites -- 9.7.1 DSC of Hybrid Filler Incorporated PU Nanocomposites -- 9.7.2 DSC of Hybrid Filler Incorporated SR Nanocomposites -- 9.7.3 DSC of Hybrid Filler Incorporated NR Nanocomposites -- 9.7.4 DSC of Hybrid Filler Incorporated SBR and NBR Nanocomposites -- 9.8 Electrical Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites -- 9.9 Thermal Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites -- 9.10 Dielectric Properties of Hybrid Filler Incorporated Elastomer Nanocomposits -- 9.11 Shape Memory Property of Hybrid Filler Incorporated Elastomer Nanocomposites -- 9.12 Summary -- Acknowledgments -- References -- Index -- EULA.
Özet
:
A hybrid material is defined as a material composed of an intimate mixture of inorganic components, organic components, or both types of components. In the last few years, a tremendous amount of attention has been given towards the development of materials for efficient energy harvesting; nanostructured hybrid materials have also been gaining significant advances to provide pollutant free drinking water, sensing of environmental pollutants, energy storage and conservation. Separately, intensive work on high performing polymer nanocomposites for applications in the automotive, aerospace and construction industries has been carried out, but the aggregation of many fillers, such as clay, LDH, CNT, graphene, represented a major barrier in their development. Only very recently has this problem been overcome by fabrication and applications of 3D hybrid nanomaterials as nanofillers in a variety of polymers. This book, Hybrid Nanomaterials, examines all the recent developments in the research and specially covers the following subjects: -Hybrid nanostructured materials for development of advanced lithium batteries -High performing hybrid nanomaterials for supercapacitor applications -Nanohybrid materials in the development of solar energy applications -Application of hybrid nanomaterials in water purification -Advanced nanostructured materials in electromagnetic shielding of radiations -Preparation, properties and application of hybrid nanomaterials in sensing of environmental pollutants -Development of hybrid fillers/polymer nanocomposites for electronic applications -High performance hybrid filler reinforced epoxy nanocomposites -State-of-the-art overview of elastomer/hybrid filler nanocomposites.
Notlar
:
John Wiley and Sons
Konu Terimleri
:
Nanocomposites (Materials)
Nanostructured materials industry -- Technological innovations.
Matériaux nanocomposites.
Nanomatériaux -- Industrie -- Innovations.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Materials Science.
TECHNOLOGY & ENGINEERING.
(FrPBN)12469384 Matériaux nanostructurés.
(FrPBN)12469384 Matériaux nanostructurés (FrPBN)11939593 -- Innovations technologiques.
Tür
:
Electronic books.
Yazar Ek Girişi
:
Srivastava, Suneel Kumar, 1954-
Mittal, Vikas,
Elektronik Erişim
:
| Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | [[missing key: search.ChildField.HOLDING]] | Durumu/İade Tarihi |
|---|
| Çevrimiçi Kütüphane | E-Kitap | 593720-1001 | TA418.9 .N35 | | Wiley E-Kitap Koleksiyonu |