Topographical tools for filtering and segmentation. 1, Watersheds on node- or edge-weighted graphs
tarafından
Meyer, Fernand, 1952- author.
Başlık
:
Topographical tools for filtering and segmentation. 1, Watersheds on node- or edge-weighted graphs
Yazar
:
Meyer, Fernand, 1952- author.
ISBN
:
9781119579519
9781119579557
9781119579540
9781786301574
Fiziksel Tanımlama
:
1 online resource
İçerik
:
Notations xiii -- Introduction xxvii -- Part 1. Getting Started 1 -- Chapter 1. A Primer to Flooding, Razing and Watersheds 3 -- 1.1. Topographic reliefs and topographic features 3 -- 1.1.1. Images seen as topographic reliefs and inversely 3 -- 1.1.2. Topographic features 5 -- 1.1.3. Modeling a topographic relief as a weighted graph 8 -- 1.2. Flooding, razing and morphological filters 10 -- 1.2.1. The principle of duality 10 -- 1.2.2. Dominated flooding and razing 10 -- 1.2.3. Flooding, razing and catchment zones of a topographic relief 16 -- 1.3. Catchment zones of flooded surfaces 18 -- 1.3.1. Filtering and segmenting 18 -- 1.3.2. Reducing the oversegmentation with markers 19 -- 1.4. The waterfall hierarchy 26 -- 1.4.1. Overflows between catchment basins 26 -- 1.5. Size-driven hierarchies 28 -- 1.6. Separating overlapping particles in n dimensions 31 -- 1.7. Catchment zones and lakes of region neighborhood graphs 33 -- 1.8. Conclusion 37 -- Chapter 2. Watersheds and Flooding: a Segmentation Golden Braid 39 -- 2.1. Watersheds, offsprings and parallel branches 40 -- 2.2. Flooding and connected operators 43 -- 2.3. Connected operators and hierarchies 45 -- 2.4. Hierarchical segmentation: extinction values 47 -- Chapter 3. Mathematical Notions 49 -- 3.1. Summary of the chapter 49 -- 3.2. Complete lattices 49 -- 3.2.1. Partial order and partially ordered sets 49 -- 3.2.2. Upper and lower bounds 50 -- 3.2.3. Complete lattices 50 -- 3.2.4. Dyadic relations on a complete lattice 51 -- 3.3. Operators between complete lattices 51 -- 3.3.1. Definition of an operator 51 -- 3.3.2. Properties of the operators 52 -- 3.3.3. Erosion and dilation 52 -- 3.3.4. Opening and closing 53 -- 3.4. The adjunction: a cornerstone of mathematical morphology 53 -- 3.4.1. Adjoint erosions and dilations 53 -- 3.4.2. Increasingness 53 -- 3.4.3. Unicity 53 -- 3.4.4. Composition 54 -- 3.4.5. Dual operators 54 -- 3.5. Openings and closings 54 -- 3.5.1. Definitions 54 -- 3.5.2. Elements with the same erosion or the same dilation 55.
5.5.3. Associating a node unstable tank network with an arbitrary edge-weighted graph G(nil,) 91 -- 5.5.4. Chaining the operations 92 -- Chapter 6. The Topography of Digraphs 97 -- 6.1. Summary of the chapter 97 -- 6.1.1. General digraphs 98 -- 6.1.2. Digraphs without perpetuum mobile configurations 98 -- 6.2. Status report 98 -- 6.2.1. Case of node-weighted graphs 99 -- 6.2.2. Case of edge-weighted graphs 99 -- 6.3. The topography of unweighted digraphs 100 -- 6.3.1. Notations 100 -- 6.3.2. Smooth zones, dead ends, flat zones and black holes of digraphs 101 -- 6.4. The topography of gravitational digraphs 105 -- 6.4.1. No perpetuum mobile 105 -- 6.4.2. Defining and propagating labels 107 -- 6.4.3. A dead leaves model of catchment zones 113 -- 6.4.4. Examples of gravitational graphs 122 -- 6.4.5. The topography of weighted graphs interpreted in the light of the derived digraphs 122 -- Part 3. Reducing the Overlapping of Catchment Zones 125 -- Chapter 7. Measuring the Steepness of Flowing Paths 127 -- 7.1. Summary of the chapter 127 -- 7.2. Why do the catchment zones overlap? 128 -- 7.2.1. Relation between the catchment zones and the flowing paths 128 -- 7.2.2. Comparing the steepness of flowing paths 128 -- 7.2.3. The redundancy between node and edge weights 129 -- 7.2.4. General flow digraphs 130 -- 7.3. The lexicographic pre-order relation of length k 131 -- 7.3.1. Prolonging flowing paths into paths of infinite length 131 -- 7.3.2. Comparing the steepness of two flowing paths 132 -- 7.3.3. Properties of steep paths 134 -- Chapter 8. Pruning a Flow Digraph 137 -- 8.1. Summary of the chapter 137 -- 8.1.1. Transforming a node- or edge-weighted graph into a node-weighted flowing digraph (reminder) 137 -- 8.1.2. Global pruning 138 -- 8.1.3. Local pruning 138 -- 8.2. The pruning operator 138 -- 8.2.1. Two operators on flow digraphs 139 -- 8.2.2. Pruning by concatenating both operators 140 -- 8.2.3. Properties of pruning 142.
8.2.4. A variant of pruning 146 -- 8.2.5. Local pruning -- 8.3. Evolution of catchment zones with pruning 147 -- 8.3.1. Analyzing a digital elevation model 148 -- Chapter 9. Constructing an -- steep Digraph by Flooding 155 -- 9.1. Summary of the chapter 155 -- 9.2. Characterization of steep graphs 156 -- 9.3. The core-expanding flooding algorithm 156 -- 9.3.1. The first version of the core-expanding algorithm 157 -- 9.3.2. The second version of the core-expanding algorithm 160 -- 9.3.3. The third version of the core-expanding algorithm 164 -- 9.3.4. The last version of the core-expanding algorithm, constructing a partial steep flowing graph 167 -- Chapter 10. Creating Steep Watershed Partitions 169 -- 10.1. Summary of the chapter 169 -- 10.2. Creating watershed partitions with the core-expanding algorithm 169 -- 10.2.1. Illustration of the HQ algorithm applied to node-weighted graphs 171 -- 10.3. Propagating labels while pruning the digraph 172 -- 10.3.1. Constructing a watershed partition during pruning 173 -- 10.4. Pruning or flooding: two ways for catchment zones to grow 176 -- Chapter 11. An Historical Intermezzo 179 -- 11.1. Watersheds: the early days 179 -- 11.1.1. The level-by-level construction of watersheds 180 -- 11.1.2. A hierarchical queue watershed algorithm 181 -- 11.2. A watershed as the SKIZ for the topographic distance 181 -- 11.2.1. The topographic distance 181 -- 11.3. Convergence into a unique algorithm of three research streams 182 -- 11.3.1. Three formulations of watershed partitions, one algorithm 182 -- 11.3.2. Discussion 183 -- Part 4. Segmenting with Dead Leaves Partitions 185 -- Chapter 12. Intermezzo: Encoding the Digraph Associated with an Image 187 -- 12.1. Summary of the theoretical developments seen so far 187 -- 12.2. Summary of the chapter 188 -- 12.3. Representing a node-weighted digraph as two images 188 -- 12.3.1. The encoding of the digraph associated with an image 188 -- 12.3.2. Operators acting on node-weighted digraphs 190.
12.4. Defining labels 192 -- 12.4.1. Operators on unweighted unlabeled digraphs 193 -- 12.4.2. Operators on labeled unweighted digraphs 194 -- 12.4.3. Operators on weighted and labeled digraphs 198 -- Chapter 13. Two Paradigms for Creating a Partition or a Partial Partition on a Graph 203 -- 13.1. Summary of the chapter 203 -- 13.2. Setting up a common stage for node- and edge-weighted graphs 203 -- 13.3. A brief tool inventory 204 -- 13.3.1. Operators making no use of the node weights 204 -- 13.3.2. Operators propagating labels 204 -- 13.3.3. Operators making use of the node weights and the graph structure 205 -- 13.4. Dead leaves tessellations versus tilings: two paradigms 205 -- 13.5. Extracting catchment zones containing a particular node 206 -- 13.5.1. Core expansion versus pruning algorithms 206 -- 13.5.2. Illustration of the pruning algorithm 207 -- 13.6. Catchment zones versus catchment basins 209 -- Chapter 14. Dead Leaves Segmentation 211 -- 14.1. Summary of the chapter 211 -- 14.2. Segmenting with a watershed 211 -- 14.2.1. Segmenting with watershed partitions 211 -- 14.2.2. A crossroad of several methods 213 -- 14.3. The evolution of a dead leaves tessellation with pruning 214 -- 14.4. Local correction of overlapping zones 217 -- 14.4.1. Pruning analysis 217 -- 14.4.2. Local pruning for reducing overlapping zones 219 -- 14.4.3. A local core-expanding algorithm for reducing overlapping zones 221 -- 14.5. Local correction of the overlapping zones on a DEM 221 -- 14.5.1. Local core-expanding algorithm for reducing overlapping zones 225 -- 14.5.2. Advantage of the two-step construction of a dead leaves tessellation 227 -- 14.6. Segmentation of some marked regions 231 -- 14.6.1. Segmenting the domain and extracting the objects of interest 232 -- 14.6.2. Extraction of the marked catchment zones and local correction of errors 233 -- Chapter 15. Propagating Segmentations 241 -- 15.1. Summary of the chapter 241 -- 15.2. Step-by-step segmentation 241 -- 15.2.1. Principle of the method 241.
15.2.2. Segmentation of blood cells 242 -- 15.2.3. Segmentation of an electronic circuit 243 -- 15.3. Marker-based segmentation 245 -- Appendix 247 -- References 259 -- Index 267.
Özet
:
Mathematical morphology has developed a powerful methodology for segmenting images, based on connected filters and watersheds. We have chosen the abstract framework of node- or edge-weighted graphs for an extensive mathematical and algorithmic description of these tools. Volume 1 is devoted to watersheds. The topography of a graph appears by observing the evolution of a drop of water moving from node to node on a weighted graph, along flowing paths, until it reaches regional minima. The upstream nodes of a regional minimum constitute its catchment zone. The catchment zones may be constructed independently of each other and locally, in contrast with the traditional approach where the catchment basins have to be constructed all at the same time. Catchment zones may overlap, and thus, a new segmentation paradigm is proposed in which catchment zones cover each other according to a priority order. The resulting partition may then be corrected, by local and parallel treatments, in order to achieve the desired precision.
Notlar
:
John Wiley and Sons
Konu Terimleri
:
Relief models.
Topographical drawing.
Modèles en relief.
Dessin topographique.
SCIENCE -- Earth Sciences -- Geography.
SCIENCE -- Earth Sciences -- Geology.
Signals & Signal Processing.
TECHNOLOGY & ENGINEERING.
Relief models
Topographical drawing
Tür
:
Electronic books.
Elektronik Erişim
:
| Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | [[missing key: search.ChildField.HOLDING]] | Durumu/İade Tarihi |
|---|
| Çevrimiçi Kütüphane | E-Kitap | 595056-1001 | GA145 | | Wiley E-Kitap Koleksiyonu |