Sodium-ion batteries : materials, characterization, and technology
tarafından
Titirici, Maria-Magdalena, editor.
Başlık
:
Sodium-ion batteries : materials, characterization, and technology
Yazar
:
Titirici, Maria-Magdalena, editor.
ISBN
:
9783527825752
9783527825769
9783527825776
Fiziksel Tanımlama
:
1 online resource
İçerik
:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Anodes -- Chapter 1 Graphite as an Anode Material in Sodium-Ion Batteries -- 1.1 Introduction -- 1.2 Graphite and Graphite Intercalation Compounds (GICs) -- 1.3 Graphite as Negative Electrode in LIBs and SIBs -- 1.3.1 Graphite in Lithium-Ion Batteries, Li-rich b-GICs -- 1.3.2 Problems in Using Graphite in Sodium-Ion Batteries (The Lack of Na-rich b-GICs) -- 1.3.3 Solution to Use Graphite in Sodium-Ion Batteries (Utilizing Na-rich t-GICs) -- 1.4 Recent Development in Using Graphite for SIBs -- 1.4.1 Lattice and Electrode Expansion During Cycling -- 1.4.2 Influence of the Electrolyte -- 1.4.3 Influence of Temperature -- 1.4.4 Physicochemical Properties -- 1.4.5 Solid Electrolyte Interphase (SEI) -- 1.4.6 Increasing the Capacity -- 1.5 Outlook -- References -- Chapter 2 Hard Carbon Anodes for Na-Ion Batteries -- 2.1 Introduction -- 2.2 Structure Characteristics of Hard Carbons -- 2.3 Characterization of Hard Carbon Materials for Na-Ion Batteries -- 2.3.1 Determining the Carbon Interlayer Spacing and the Degree of Disorder -- 2.3.2 Characterizations of Defects -- 2.3.3 Porosity Characterization -- 2.3.4 Surface Composition and Electrode-Electrolyte Interface Characterization -- 2.3.5 Other In/Ex Situ Characterization Techniques to Elucidate Structure-Performance Correlations -- 2.4 Sodium Storage Mechanisms in Hard Carbons -- 2.5 Types of Hard Carbon Anodes for Na-Ion Batteries -- 2.5.1 Biomass-Derived Hard Carbons -- 2.5.2 Heteroatom-Doped Hard Carbons -- 2.5.2.1 Nitrogen Doping -- 2.5.2.2 Boron, Sulfur, and Phosphorus Doping -- 2.5.2.3 Oxygen Doping -- 2.5.2.4 Multiatom Doping -- 2.5.3 Other Hard Carbons -- 2.5.4 The Combination of Hard and Soft Carbons -- 2.6 Conclusions and Outlook -- References -- Chapter 3 Alloy Anodes for Sodium-Ion Batteries -- 3.1 Introduction.
3.2 Challenges Faced by Alloy-Typed Anodes -- 3.2.1 Volume Expansion -- 3.2.2 Unstable Solid Electrolyte Interphase Layer -- 3.2.3 Voltage Hysteresis -- 3.2.4 Elucidation of the Electrochemical Reaction Mechanisms -- 3.3 Strategies Toward High-Performance Alloy Anodes -- 3.3.1 Nanostructuring -- 3.3.2 Morphological and Electrode Architectural Control -- 3.3.3 Structural Engineering -- 3.3.4 Surface Engineering -- 3.3.5 Hybrid Composite Design -- 3.4 Modification of Alloy Anodes -- 3.4.1 Phosphorus -- 3.4.1.1 Red Phosphorus -- 3.4.1.2 Black Phosphorus -- 3.4.2 Silicon -- 3.4.3 Tin -- 3.4.4 Germanium -- 3.4.5 Antimony -- 3.4.6 Bismuth -- 3.4.7 Intermetallic Compounds -- 3.5 Summary and Outlook -- References -- Part II Cathodes -- Chapter 4 Sodium Layered Oxide Cathode Materials -- 4.1 Introduction -- 4.1.1 Structure Types -- 4.1.2 High-Voltage Nickel-Based Sodium Layered Oxides -- 4.1.2.1 Introduction -- 4.1.2.2 Unary Ni Layered Oxides -- 4.1.2.3 Binary Ni/Fe-Based Layered Oxides -- 4.1.2.4 Binary Ni/Mn-Based Layered Oxides -- 4.1.2.5 Conclusions and Outlook -- 4.1.3 Low-Cost Mn and Fe-Based Sodium Layered Oxides -- 4.1.3.1 Introduction -- 4.1.3.2 Unary Mn and Fe Layered Oxides -- 4.1.3.3 Binary Mn/Fe-Based Layered Oxides -- 4.1.3.4 Doped Binary Mn/Fe Layered Oxides -- 4.1.3.5 Conclusions and Outlook -- 4.1.4 Layered Oxides with Anionic Redox Reactions -- 4.1.4.1 Introduction -- 4.1.4.2 Structural Approaches to Enhance Oxygen Redox and Its Reversibility -- 4.1.4.3 Conclusions -- 4.1.5 Conclusions and Future Outlook -- References -- Chapter 5 Phosphate-Based Polyanionic Sodium-Ion Electrode Materials -- 5.1 Introduction -- 5.2 Phosphate-Based Electrode Materials -- 5.2.1 Sodium Transition Metal Phosphates (PO43−) -- 5.2.2 Sodium Transition Metal Metaphosphates (PO43−)3 -- 5.2.3 Sodium Transition Metal Pyrophosphate (P2O74−).
5.2.4 Sodium Transition Metal Oxyphosphate (OPO4) -- 5.2.5 Sodium Transition Metal Fluorophosphates -- 5.2.5.1 NaMPO4F (M & -- equals -- V) -- 5.2.5.2 Na2MPO4F (M & -- equals -- Fe, Mn, Co, Ni,) -- 5.2.6 Sodium-Fluorinated Vanadium Oxyphosphates Na3V2(PO4)2F3−xOx (0 ≤ x2) -- 5.2.7 Sodium Transition Metal Nitridophosphates Na2MII2(PO3)3N and Na3MIII(PO3)3N -- 5.3 Mixed Polyanion-Based Electrode Materials -- 5.3.1 Mixed Transition Metal Phosphates-Pyrophosphates [(PO4)(P2O7)] -- 5.3.1.1 Na4M3(PO4)2P2O7 -- 5.3.1.2 Na7M4(P2O7)4PO4 -- 5.3.2 Mixed Transition Metal Carbonates-Phosphates [(CO3)(PO4)] -- 5.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 6 Prussian Blue Electrodes for Sodium-Ion Batteries -- 6.1 Introduction -- 6.2 Structural and Bonding -- 6.3 Factors Affecting Electrochemical Behavior -- 6.3.1 Structural Transitions -- 6.3.2 Vacancies and Water -- 6.4 Synthetic Strategies -- 6.4.1 Solution Precipitation Method -- 6.4.2 Hydrothermal Method/Solvothermal -- 6.4.3 Electrodeposition -- 6.5 Aqueous SIBs -- 6.5.1 Single Redox PBAs -- 6.5.2 Multielectron Redox PBAs -- 6.5.3 All PBA Full Aqueous SIBs (ASIBs) -- 6.6 Non-aqueous SIBs -- 6.6.1 NaxM[Fe(CN)6] - Single Redox Site -- 6.6.2 NaxM[Fe(CN)6] - Multiredox Sites -- 6.6.3 NaxM[A(CN)6] - Changing C-Coordinated Metal -- 6.7 Commercial Feasibility -- 6.8 Challenges and Future Directions -- References -- Part III Advanced Characterization of Na-Ion Battery Electrodes -- Chapter 7 Understanding Na-Ion Batteries on the Atomic Scale Through Operando X-ray and Neutron Scattering -- 7.1 The Importance and Advantages of Operando Studies -- 7.2 Operando Powder X-ray Diffraction -- 7.2.1 Choice of X-ray Source and Detector -- 7.2.2 Design of Operando PXRD Cells -- 7.2.3 Constructing the Na-Ion Battery Stack for Operando PXRD Studies -- 7.2.3.1 Electrode of Interest.
9.4.4 Alloying NIB Anodes -- 9.5 Summary -- Acknowledgements -- References -- Chapter 10 Pair Distribution Function Analysis of Sodium-Ion Batteries -- 10.1 Introduction to Total-Scattering and the Pair Distribution Function -- 10.1.1 Conventional Crystallographic Analysis and Total-Scattering -- 10.1.2 The Pair Distribution Function -- 10.1.3 Experimental Methods to Obtain the Pair Distribution Function -- 10.1.4 Data Collection Methods for Battery Materials -- 10.1.4.1 Sample Containers for X-ray PDF Analysis -- 10.1.4.2 Experimental Strategies -- 10.2 Analyzing the Pair Distribution Function -- 10.2.1 Model-Independent Analyses -- 10.2.1.1 Parametric Studies and Differential PDFs (dPDFs) -- 10.2.2 Modeling the PDF -- 10.2.2.1 Small-Box Modeling -- 10.2.2.2 Big-Box Modeling -- 10.3 Pair Distribution Function Analysis of Sodium-Ion Battery Materials -- 10.3.1 Hard Carbon Anodes -- 10.3.2 Tin Anodes -- 10.3.3 Antimony Anodes -- 10.3.4 Local Cation Order in Na(Ni2/3Sb1/3)O2 -- 10.3.5 Birnessite Materials -- 10.3.6 Electrolytes -- 10.4 Future Horizons for Pair Distribution Function Analysis of Sodium-Ion Batteries -- References -- Part IV Electrolytes -- Chapter 11 Ester- and Ether-Based Electrolytes for Na-Ion Batteries -- 11.1 Introduction -- 11.2 Ester-Based Electrolytes for NIBs -- 11.3 Ether-Based Electrolytes for NIBs -- 11.4 Summary and Perspectives -- References -- Chapter 12 Ionic Liquid and Polymer-Based Electrolytes for Sodium Battery Applications -- 12.1 Introduction -- 12.2 Na-Ion-Based Ionic Liquid Electrolytes -- 12.2.1 The Chemistry and Physicochemical Properties of IL Electrolytes -- 12.2.2 IL Electrolytes Application in Na Secondary Batteries -- 12.2.3 Interfacial Studies of Sodium-Ion Secondary Batteries Using IL Electrolytes -- 12.3 Solid Gel Polymer Electrolytes -- 12.4 Molecular Simulation of Na Battery Electrolytes.
Özet
:
Presents uparalleled coverage of Na-ion battery technology, including the most recent research and emerging applications Na-ion battery technologies have emerged as cost-effective, environmentally friendly alternatives to Li-ion batteries, particularly for large-scale storage applications where battery size is less of a concern than in portable electronics or electric vehicles. Scientists and engineers involved in developing commercially viable Na-ion batteries need to understand the state-of-the-art in constituent materials, electrodes, and electrolytes to meet both performance metrics and economic requirements. Sodium-Ion Batteries: Materials, Characterization, and Technology provides in-depth coverage of the material constituents, characterization, applications, upscaling, and commercialization of Na-ion batteries. Contributions by international experts discuss the development and performance of cathode and anode materials and their characterization - using methods such as NMR spectroscopy, magnetic resonance imaging (MRI), and computational studies - as well as ceramics, ionic liquids, and other solid and liquid electrolytes. * Discusses the development of battery technology based on the abundant alkali ion sodium * Features a thorough introduction to Na-ion batteries and their comparison with Li-ion batteries * Reviews recent research on the structure-electrochemical performance relationship and the development of new solid electrolytes * Includes a timely overview of commercial perspectives, cost analysis, and safety issues of Na-ion batteries * Covers emerging technologies including Na-ion capacitors, aqueous sodium batteries, and Na-S batteries The handbook Sodium-Ion Batteries: Materials, Characterization, and Technology is an indispensable reference for researchers and development engineers, materials scientists, electrochemists, and engineering scientists in both academia and industry.
Notlar
:
John Wiley and Sons
Konu Terimleri
:
Sodium ion batteries.
Sodium ion batteries
Yazar Ek Girişi
:
Titirici, Maria-Magdalena,
Adelhelm, Philipp,
Hu, Yong Sheng,
Elektronik Erişim
:
| Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | [[missing key: search.ChildField.HOLDING]] | Durumu/İade Tarihi |
|---|
| Çevrimiçi Kütüphane | E-Kitap | 598052-1001 | TK2945 .S62 S63 2023 | | Wiley E-Kitap Koleksiyonu |