Thermodynamics of Heat Engines.
tarafından
 
Desmet, Bernard.

Başlık
Thermodynamics of Heat Engines.

Yazar
Desmet, Bernard.

ISBN
9781394188192
 
9781394188178

Fiziksel Tanımlama
1 online resource (258 pages)

İçerik
Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Chapter 1. Energy Conversion: Thermodynamic Basics -- 1.1. Introduction -- 1.2. Principles of thermodynamics -- 1.2.1. Notion of a thermodynamic system -- 1.2.2. First law -- 1.2.3. Second law: mechanism of mechanical energy degradation in a heat engine -- 1.3. Thermodynamics of gases -- 1.3.1. Equations of state -- 1.3.2. Calorimetric coefficients -- 1.3.3. Ideal gas -- 1.3.4. Van der Waals gas -- 1.4. Conclusion -- 1.5. References -- Chapter 2. Internal Combustion Engines -- 2.1. Generalities -- Operating principles -- 2.1.1. Introduction -- 2.1.2. Spark-ignition engines -- 2.1.3. Compression ignition engine -- 2.1.4. Expression of useful work -- 2.2. Theoretical air cycles -- 2.2.1. Hypotheses -- 2.2.2. Beau de Rochas cycle (Otto cycle) -- 2.2.3. Miller-Atkinson cycle -- 2.2.4. Diesel cycle -- 2.2.5. The limited pressure cycle (mixed cycle) -- 2.2.6. Comparison of theoretical air cycles -- 2.3. Influences of the thermophysical properties of the working fluid on the theoretical cycles -- 2.3.1. Thermophysical properties of the working fluid -- 2.3.2. Reversible adiabatic transformations -- 2.3.3. Mixed cycle for ideal and semi-ideal gases -- 2.4. Zero-dimensional thermodynamic models -- 2.4.1. Hypotheses -- 2.4.2. Single-zone model -- 2.4.3. Flow through the valves -- 2.4.4. Heat transfer with the cylinder walls -- 2.4.5. Combustion heat generation model -- 2.4.6. Two-zone model -- 2.5. Supercharging of internal combustion engines -- 2.5.1. Basic principles of supercharging -- 2.5.2. Supercharging by a driven compressor -- 2.5.3. Turbocharging -- 2.6. Conclusions and perspectives -- 2.7. References -- Chapter 3. Aeronautical and Space Propulsion -- 3.1. History and development of aeronautical means of propulsion.
 
3.2. Presentation of the aircraft system and its propulsive unit -- 3.2.1. Classification and presentation of the usual architectures of aeronautical engines and their specific uses -- 3.2.2. Study of the forces applied on the aircraft system during steady flight -- 3.2.3. Definition of the propulsion forces and specific quantities of the propulsion system -- 3.3. Operating cycle analysis -- 3.3.1. Hypotheses and limits of validity -- 3.3.2. Presentation of engine stations (SAE ARP 755 STANDARD) -- 3.3.3. Study of thermodynamic transformations and their representations in T- s diagrams -- 3.3.4. Study of the thermodynamic cycles for a gas turbine -- 3.3.5. Study of the thermodynamic cycle of a gas turbine, branch by branch -- 3.3.6. Improvements to the Joule-Brayton cycle -- 3.3.7. Thermodynamic improvements for a gas turbine using energy regeneration -- 3.3.8. Thermodynamic improvements for a gas turbine using staged compression and expansion -- 3.4. The actual engine -- 3.4.1. Development cycle of the turbomachine (turbojet) -- 3.4.2. Technical disciplines in development -- 3.4.3. Some specific problems of each module -- 3.4.4. Secondary air system design methods -- 3.4.5. T4 and the secondary air system -- 3.5. Perspectives -- 3.6. References -- Chapter 4. Combustion and Conversion of Energy -- 4.1. Generalities -- 4.1.1. Introduction -- 4.1.2. Premixed flame -- 4.1.3. Diffusion flame -- 4.1.4. Stabilization of a flame -- 4.1.5. Flammability of air-fuel mixtures -- 4.1.6. Combustion in internal combustion engines -- 4.2. Theoretical combustion reactions -- 4.2.1. Constituents of the combustible mixture -- 4.2.2. Combustion stoichiometry -- 4.2.3. Theoretical combustion of a lean mixture -- 4.2.4. Theoretical combustion of a rich mixture -- 4.3. Energy study of combustion -- 4.3.1. Combustion at constant volume.
 
4.3.2. Combustion at constant pressure -- 4.3.3. Relations between heating values -- 4.3.4. Adiabatic flame and explosion temperatures -- 4.4. Chemical kinetics of combustion -- 4.4.1. Chain reactions -- 4.4.2. Composition of a reactive mixture -- 4.4.3. Reaction rates -- 4.4.4. Establishing a chemical equilibrium -- 4.4.5. Equilibrium composition of the combustion products -- 4.4.6. Detailed chemical kinetics-formation of pollutants -- 4.5. Exergy analysis of combustion -- 4.5.1. Exergy of a gas mixture -- 4.5.2. Exergy production from a combustion reaction -- 4.5.3. Exergy of a fuel -- 4.6. Conclusion -- 4.7. References -- Chapter 5. Engines with an External Heat Supply -- 5.1. Introduction -- 5.2. The Stirling engine -- 5.2.1. Theoretical cycle -- 5.2.2. Characteristics of the Stirling engine -- 5.3. The Ericsson engine -- 5.3.1. Operating principles -- 5.3.2. Theoretical cycles -- 5.3.3. Improvements of the Ericsson engine -- 5.4. Perspectives -- 5.4.1. Advantages and disadvantages of Stirling and Ericsson engines -- 5.4.2. Perspectives of evolution of external combustion machines in the new decarbonized energy landscape -- 5.5. References -- Chapter 6. Energy Recovery -- Waste Heat Recovery -- 6.1.Waste energy recovery -- 6.1.1. Energy balance of an internal combustion engine -- 6.1.2. Degradation of mechanizable energy into uncompensated heat -- 6.1.3. Exergy balance in internal combustion engines -- 6.1.4. Concept of energy recovery -- 6.2. Cogeneration in industrial facilities -- 6.2.1. Cogenerating gas turbines -- 6.2.2. Cogenerating diesel engine -- 6.2.3. Comparative cogeneration efficiencies -- 6.2.4. Complex depressurized cycle -- 6.2.5. Complex over-expansion cycle -- 6.2.6. Conclusion -- 6.3. Micro-cogeneration -- 6.3.1. Introduction -- 6.3.2. Classification -- 6.3.3. Internal combustion engines -- 6.3.4. Gas micro-turbines.
 
6.3.5. Fuel cells -- 6.3.6. Thermoelectricity -- 6.3.7. Thermoacoustics -- 6.3.8. "Rankinized" cycles -- 6.4. Conclusion -- 6.5. Perspectives -- 6.6. References -- List of Authors -- Index -- EULA.

Özet
Optimizing the process of converting heat into mechanical power is a major challenge when it comes to meeting targets for protecting primary energy resources and minimizing our environmental impact. For many years to come, the use of thermal engines will continue to be necessary for transportation on land, by sea and by air, as well as for many industrial applications. Against this background, Thermodynamics of Heat Engines aims to present a comprehensive overview of the thermodynamic concepts, including combustion, that are necessary for understanding the phenomena governing the energy efficiency of internal and external combustion engines as well as that of gas turbines and jet propulsion engines. Existing and developing industrial applications, based on combined heat and power (CHP) or the use of staged cycles, are presented, with particular attention paid to the recovery of low temperature waste heat. This book, which is mainly intended for university and engineering students but is also useful for engineers and technicians working in the fields concerned, provides a basis for reflection on the optimization of energy systems.

Notlar
John Wiley and Sons

Konu Terimleri
Heat-engines.
 
Moteurs thermiques.
 
Heat-engines

Yazar Ek Girişi
Desmet, Bernard.

Elektronik Erişim
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394188192


KütüphaneMateryal TürüDemirbaş NumarasıYer Numarası[[missing key: search.ChildField.HOLDING]]Durumu/İade Tarihi
Çevrimiçi KütüphaneE-Kitap598144-1001TJ255 .T46 2022Wiley E-Kitap Koleksiyonu