Method validation in pharmaceutical analysis : a guide to best practice
tarafından
 
Ermer, Joachim, editor.

Başlık
Method validation in pharmaceutical analysis : a guide to best practice

Yazar
Ermer, Joachim, editor.

ISBN
9783527831708
 
9783527831715

Basım Bilgisi
Third edition.

Fiziksel Tanımlama
1 online resource (544 pages)

İçerik
Preface -- 1 Analytical Validation Within the Pharmaceutical Lifecycle 1 Phil Nethercote and Joachim Ermer -- 1.1 Development of Process and Analytical Validation Concepts -- 1.2 Alignments Between Process and Analytics: Three-Stage Approach -- 1.3 Predefined Objectives: ATP -- 1.4 Analytical Lifecycle -- References -- Part I Prerequisites -- 2 Data Governance, Data Integrity, and Data Quality 15 R.D. McDowall and C. Burgess -- 2.1 Terminology Used in This Chapter -- 2.1.1 Data Governance -- 2.1.2 Data Integrity -- 2.1.3 Data Quality -- 2.2 Data Governance and Data Integrity Model -- 2.2.1 Descriptions of the Four Levels in the Model -- 2.2.2 Foundation - Data Governance -- 2.2.2.1 Senior Management Involvement -- 2.2.2.2 Policies and Procedures Need To Be in Place -- 2.2.2.3 Roles and Responsibilities -- 2.2.2.4 Quality Culture and Working Environment -- 2.2.2.5 Outsourcing Analysis -- 2.2.2.6 Quality Oversight -- 2.2.3 Level 1: Analytical Instrument Qualification and System Validation (aiqsv) -- 2.2.4 Level 2: Analytical Procedure Lifecycle -- 2.2.5 Level 3: Right Analysis for the Right Analytical Result -- 2.2.6 Quality Oversight for Data Integrity -- 2.3 Interaction Between Levels 1 and 2 -- 2.4 Overview of Data Integrity -- 2.5 ALCOA Criteria for Data Integrity -- 2.6 Understanding Level 3: Right Analysis for the Right Reportable Result -- 2.6.1 Analytical Procedure -- 2.6.2 Trained Analysts Working in an Open Culture -- 2.6.3 Instruments and Systems Used -- 2.6.4 Sample Preparation -- 2.6.5 Time Synchronisation -- 2.6.6 Digitalisation of Sample Preparation -- 2.6.7 Instrumental Analysis by Chromatography -- 2.6.8 Peak Integration -- 2.6.9 Calculation of the Reportable Result -- 2.7 Second-Person Review -- 2.8 Summary -- References -- 3 Analytical Instrument Qualification and System Validation Lifecycle 35 C. Burgess and R.D. McDowall -- 3.1 Data Integrity and Data Quality in a GMP Environment -- 3.1.1 Criteria for Data Quality -- 3.1.2 Regulatory Rationale for Qualified Analytical Instruments and Validated Systems -- 3.2 AIQSV Approach as an Essential Part of the Analytical Procedure Lifecycle -- 3.3 USP General Chapter <1058> -- 3.3.1 Data Quality Triangle -- 3.3.2 AIQ Lifecycle: The 4Qs Model -- 3.3.3 Risk-Based Classification of Apparatus, Instruments, and Systems -- 3.3.4 Roles and Responsibilities for AIQ -- 3.3.5 Software Validation for Group B and C Systems -- 3.4 Enhancement of <1058> and Harmonization of a Risk-Based Approach to Instruments and Systems with GAMP -- 3.4.1 Increased Granularity of USP <1058> Groups -- 3.4.2 Clarification of AIQ Terminology -- 3.4.3 A Continuum of Analytical Apparatus, Instruments, and Systems -- 3.4.4 Mapping USP <1058> Instrument Groups to GAMP Software Categories -- 3.4.5 Enhanced Data Quality Triangle -- 3.5 Risk-Based Approaches to Analytical Instrument and System Qualification [3] -- 3.5.1 Expanded <1058> Instrument and System Categories -- 3.5.1.1 Group A - Apparatus -- 3.5.1.2 Group B - Instruments -- 3.5.1.3 Group C - Systems -- 3.5.2 Examples of Possible Lifecycle Activities for the Eight Enhanced Categories -- References -- 4 Continued HPLC Performance Qualification 51 Hermann Wätzig and Neil J. Lander -- 4.1 Introduction -- 4.1.1 The Importance of Analytical Instrument Qualification -- 4.1.2 Terms and Definitions -- 4.1.3 Continued Performance Qualification: More by Less -- 4.2 Development of the Revised OQ/PQ Parameters List -- 4.3 Transfer of Modular Parameters into the Holistic Approach -- 4.3.1 Autosampler -- 4.3.2 Solvent Delivery System -- 4.3.3 Detector -- 4.4 OQ/PQ Data in Comparison with SST Data -- 4.5 Performance Monitoring: Trending Plots/Control Charts -- 4.5.1 Automated Limit Checking -- 4.6 General Procedure for cPQ -- 4.7 Example -- 4.8 Concluding Remarks -- Acknowledgment -- References -- Part II Establishment of Measurement Requirements -- 5 Analytical Target Profile 71 Brent Harrington -- 5.1 Introduction -- 5.2 Components of an ATP -- 5.3 The Probability Statements -- 5.4 Metrics for Assessment -- 5.5 Summary -- Acknowledgments -- References -- 6 Decision Rules and Fitness for Intended Purpose 79 Jane Weitzel -- 6.1 Introduction -- 6.2 Defining the Fitness for Intended Purpose -- 6.3 Decision Rules -- 6.4 Overview of Process to Develop Requirements for Procedure Performance -- 6.5 Decision Rules and Compliance -- 6.6 Calculating Target Measurement Uncertainty -- 6.6.1 Coverage Factor, k, and Data Distributions -- 6.7 Types of Decision Rules -- 6.7.1 Decision Rules That Use Guard Bands -- 6.7.2 Decision Rules That Use Transition Rules -- 6.8 Target Measurement Uncertainty in the ATP -- 6.8.1 Cost of Analysis -- 6.9 Bias and Uncertainty in a Procedure -- 6.10 ATP and Key Performance Indicators -- 6.11 Measurement Uncertainty -- 6.11.1 What Uncertainty Is -- 6.11.2 Reporting Measurement Uncertainty -- 6.11.3 How Uncertainty Is Estimated -- 6.11.3.1 Step 1. Specify the Measurand -- 6.11.3.2 Step 2. Identify Uncertainty Components and Data Sources -- 6.11.3.3 Step 3. Quantify the Uncertainty Components -- 6.11.3.4 Step 4. Calculate the Combined Uncertainty -- 6.11.3.5 Step 5. Calculate the Expanded Uncertainty -- 6.11.4 Uncertainty Contains All Sources of Random Variability -- 6.12 Example -- 6.13 Conclusion -- References -- 7 Performance Characteristics of Analytical Procedures 97 Joachim Ermer -- 7.1 Precision -- 7.1.1 The Normal Distribution and its Parameters -- 7.1.1.1 But How Do I Know that My Analysis Results Are Normally Distributed? -- 7.1.1.2 So Why Is the Normal Distribution that Popular? -- 7.1.1.3 Student-t-Distribution -- 7.1.1.4 Confidence Intervals -- 7.1.2 The Log-normal Distribution -- 7.1.3 Normal, Not-normal, and Out-of Specification (OOS) -- 7.1.3.1 Out-of-Specification (OOS) Results -- 7.1.4 Precision Levels -- 7.1.4.1 System or Instrument Precision -- 7.1.4.2 Repeatability -- 7.1.4.3 Intermediate Precision and Reproducibility -- 7.1.4.4 Precision of the Reportable Result -- 7.1.5 Calculation of Precisions and Variances -- 7.1.5.1 Analysis of Variances (ANOVA) -- 7.1.5.2 Calculation of Precision from Linear Regression -- 7.1.5.3 Measurement Uncertainty (Error Propagation) -- 7.1.6 Concentration Dependency of Precision -- 7.1.7 Precision Acceptance Criteria -- 7.1.7.1 Acceptable Precision for Assay -- 7.1.7.2 Acceptable Precision for Impurities and Minor Components -- 7.1.7.3 Precisions Benchmarks -- 7.1.8 Precision and Reportable Range -- 7.1.9 Precision Highlights -- 7.2 Accuracy -- 7.2.1 Inference from Precision, Response, and Specificity -- 7.2.2 Comparison -- 7.2.2.1 Significance Tests -- 7.2.2.2 Equivalence Tests -- 7.2.2.3 Direct Comparison (Point Estimate) -- 7.2.2.4 Comparison Examples -- 7.2.3 Spiking Studies (Recovery) -- 7.2.3.1 Percentage Recovery -- 7.2.3.2 Recovery Function -- 7.2.3.3 Standard Addition -- 7.2.3.4 Impurities/Degradants -- 7.2.4 Combined Evaluation of Accuracy and Precision -- 7.2.5 Acceptance Criteria -- 7.2.6 Stability of Sample and Reference Standard Solutions -- 7.2.7 Accuracy Highlights -- 7.3 Specificity/Selectivity -- 7.3.1 Selective Detection -- 7.3.2 Selective Sample Preparation -- 7.3.3 Stress Samples -- 7.3.4 Demonstration of Specificity/selectivity by Accuracy -- 7.3.5 Chromatographic Resolution -- 7.3.6 Peak Purity (Co-elution) -- 7.3.6.1 Re-chromatography -- 7.3.6.2 Diode Array Detection -- 7.3.6.3 Lc-ms -- 7.3.7 Specificity/selectivity Highlights -- 7.4 Response (Calibration Model) -- 7.4.1 Unweighted Linear Regression -- 7.4.1.1 Prerequisites -- 7.4.1.2 Confidence and Prediction Intervals -- 7.4.1.3 Graphical Evaluation of the Calibration Model -- 7.4.1.4 Numerical Regression Parameters -- 7.4.1.5 Statistical Linearity Tests -- 7.4.1.6 Evaluation of the Intercept (Absence of Systematic Errors) -- 7.4.2 Weighted Linear Regression -- 7.4.3 Appropriate Calibration Models -- 7.4.3.1 Optimal Concentration for Single-point Calibration in Case of Impurity Testing -- 7.4.3.2 Area% Quantitation -- 7.4.3.3 Matrix Impact -- 7.4.4 Non-linear Response -- 7.4.5 Calibration Highlights -- 7.5 Detection and Quantitation Limits -- 7.5.1 Requirements in Pharmaceutical Impurity Determination -- 7.5.1.1 General Quantitation Limit -- 7.5.1.2 Intermediate Quantitation Limit -- 7.5.2 Approaches Based on the Blank -- 7.5.3 Determination of DL/QL from Linear Response -- 7.5.3.1 Standard Deviation of the Response -- 7.5.3.2 95% Predictio.
 
n Interval of the Regression Line -- 7.5.3.3 Approach Based on German Standard DIN 32645 -- 7.5.3.4 From the Relative Uncertainty -- 7.5.4 Accuracy and Precision-based Approaches -- 7.5.5 Comparison of the Various Approaches -- 7.5.6 Quantitation Limit Highlights -- Acknowledgments -- References -- Part III Method Design and Understanding -- 8 ICHQ14 Analytical Procedure Development 219 Phil Borman (GSK), Peter Hamilton (AZ), and Jean-François Dierick (GSK) -- 8.1 Introduction -- 8.2 The ATP -- 8.3 Connection Between Product and Analytical Procedure Understanding -- 8.4 Prior and Platform Knowledge -- 8.5 Robustness and Method Operable Design Region (MODR) -- 8.6 Link and Impact with Analytical Procedure Validation -- 8.7 Analytical Procedure Control Strategy and Ongoing Procedure Performance Verification -- 8.8 Lifecycle Strategy Including Enhanced Approaches in Submission -- 8.9 Summary -- References -- 9 Method Selection, Development, and Optimization 237 Melissa Hanna-Brown, Roman Szucs, and Brent Harrington -- 9.1 Introduction -- 9.2 Method Selection -- 9.3 Method Development -- 9.4 Method Optimization -- Acknowledgments -- References -- 10 Multivariate Analytical Procedures 265 Wei Meng and Phil Borman -- 10.1 Introduction -- 10.1.1 Use of Multivariate Analytical Procedures in the Pharmaceutical Industry -- 10.1.1.1 Product and Process Design Phase -- 10.1.1.2 Control Strategy Development Phase -- 10.1.1.3 Process Validation and Lifecycle Strategy Phase -- 10.2 Sampling and Data Quality -- 10.3 Development of Multivariate Models -- 10.3.1 Data Preprocessing -- 10.3.2 Variable Selection -- 10.3.3 Exploratory Data Analysis -- 10.3.3.1 Principal Component Analysis -- 10.3.3.2 Outliers Detection and Handling -- 10.3.3.3 Cluster Analysis -- 10.3.4 Model Calibration -- 10.3.4.1 Quantitative Modeling -- 10.3.4.2 Qualitative Modeling -- 10.4 Model Optimization and Validation -- 10.4.1 Cross-Validation -- 10.4.2 Mode Performance Assessment -- 10.5 Model Maintenance and Lifecycle Management -- 10.5.1 Ongoing Verification -- 10.5.1.1 Ordinary Maintenance -- 10.5.1.2 Evaluation of Triggers -- 10.5.2 Review Process -- 10.5.2.1 Model Update Assessment -- 10.5.2.2 Model Update Approval -- 10.5.2.3 New Model Version Development and Validation -- 10.5.3 Model Implementation Management -- 10.6 Summary -- Acknowledgments -- References -- 11 Case Study: Robustness Investigations 301 Gerd Kleinschmidt and Birgit Niederhaus -- 11.1 Introduction -- 11.2 General Considerations in the Context of Robustness Testing -- 11.3 Examples of Computer-Assisted Robustness Studies -- 11.3.1 Robustness Testing Based on Chromatography Modeling Software -- 11.3.2 Robustness Testing Based on Experimental Design -- Acknowledgment -- References -- 12 Risk Assessment and Analytical Procedure Control Strategy 343 Phil Nethercote -- 12.1 Background -- 12.2 Risk Management Process -- 12.3 Ich Q9 -- 12.4 Using Risk Management to Develop a Control Strategy -- 12.4.1 Risk Identification/Hazard Identification -- 12.4.2 Risk Analysis -- 12.4.3 Risk Evaluation and Control -- 12.5 Analytical Procedure Control Strategy -- References -- Part IV Method Performance Qualification -- 13 ICH Q2(R2): Validation of Analytical Procedures 353 Joachim Ermer -- 13.1 How to Read This Chapter -- 13.2 Introduction -- 13.2.1 Interpretation -- 13.3 General Considerations for Analytical Procedure Validation -- 13.3.1 New -- 13.3.2 Interpretation -- 13.3.3 Analytical Procedure Validation Study -- 13.3.4 New -- 13.3.5 Interpretation -- 13.3.6 Validation During the Lifecycle of an Analytical Procedure -- 13.3.6.1 Interpretation -- 13.3.7 Reportable Range -- 13.3.7.1 Interpretation -- 13.3.8 Demonstration of Stability-indicating Properties -- 13.3.8.1 Interpretation -- 13.3.9 Considerations for Multivariate Analytical Procedures -- 13.4 Validation Tests, Methodology, and Evaluation -- 13.4.1 Specificity/Selectivity -- 13.4.1.1 New -- 13.4.1.2 Interpretation -- 13.4.2 Range -- 13.4.2.1 General Considerations -- 13.4.2.2 Response -- 13.4.2.3 Validation of Lower Range Limits -- 13.4.3 Accuracy and Precision -- 13.4.3.1 Accuracy -- 13.4.3.2 Precision -- 13.4.3.3 Combined Approaches for Accuracy and Precision -- 13.4.4 Robustness -- 13.4.4.1 New -- 13.5 Annex 2: Illustrative Examples for Analytical Techniques -- 13.5.1 Interpretation -- 13.5.2 Some Specific Gaps -- 13.6 Conclusion -- References -- 14 Case Study: Validation of a High-performance Liquid Chromatography (HPLC) Method for Identity, Assay, and Degradation of Products 373 Gerd Kleinschmidt and Birgit Niederhaus -- 14.1 Introduction -- 14.2 Experimental -- 14.3 Validation Summary -- 14.4 Validation Methodology -- 14.4.1 Specificity -- 14.4.2 Calibration Model -- 14.4.2.1 Calibration Model of mc -- 14.4.2.2 Calibration Model of DP 1 -- 14.4.3 Accuracy -- 14.4.3.1 Accuracy of mc -- 14.4.3.2 Accuracy of DP1 (Degradation Products) -- 14.4.4 Precision -- 14.4.4.1 System Precision -- 14.4.4.2 Repeatability -- 14.4.4.3 Intermediate Precision -- 14.4.5 Loq -- 14.4.6 Reportable Range -- 14.5 Conclusion -- References -- 15 Case Study: Design and Qualification of a Delivered Dose Uniformity Procedure for a Pressurized Metered Dose Inhaler with a Focus on Sample Preparation 391 Andy Rignall -- 15.1 Introduction -- 15.1.1 Analytical Procedures for Complex Dosage Forms -- 15.1.2 Human and Environmental Factors Associated with Complex Laboratory Procedures -- 15.1.3 Delivered Dose Uniformity Testing for Inhalation Products -- 15.2 Designing a DDU Procedure that will Meet an ATP -- 15.2.1 Risk Assessment and Classification -- 15.2.1.1 Device Preparation -- 15.2.1.2 Dose Collection -- 15.2.1.3 Experimental Factors Associated with Dose Collection -- 15.2.1.4 Shaking Profile Experiments -- 15.2.1.5 Actuation Profile Experiments -- 15.2.2 Noise Factors Associated with Dose Collection -- 15.2.3 Dose Recovery and Sample Preparation -- 15.2.4 Automated DDU Procedure -- 15.2.4.1 Automated Shaking -- 15.2.4.2 Automated Actuation -- 15.2.4.3 Automated DDU Procedure -- 15.2.5 Results Calculation and Reporting -- 15.3 Performance Characteristics of the DDU Procedure -- 15.4 Qualification of the DDU Procedure -- 15.5 Summary of the Analytical Procedure Control Strategy for a DDU Procedure -- Acknowledgments -- References -- 16 Case Study: Validation of a Bioassay Method 405 Andrea Sobjak -- 16.1 Introduction -- 16.2 Material Considerations -- 16.3 Study Design -- 16.4 Specificity/Selectivity -- 16.4.1 Stability-indicating Properties -- 16.5 Accuracy -- 16.6 Precision -- 16.6.1 Intermediate Precision -- 16.6.2 Repeatability -- 16.6.3 Reproducibility -- 16.7 Range -- 16.8 Robustness -- 16.9 Conclusion -- Acknowledgments -- References -- 17 Implementation of Compendial/Pharmacopeia Test Procedures 419 Pauline L. McGregor -- 17.1 Background of Pharmacopeia Procedures -- 17.2 How Pharmacopeia Methods Are Generated and Published -- 17.3 Challenges with Compendial Procedures and the Need to Verify -- 17.4 Using Pharmacopeia Procedures in a Laboratory for the First Time -- 17.5 Verification of Pharmacopeia Procedures -- 17.6 Integration of the Verification Process and the Lifecycle Approach -- 17.7 Implementation of a Pharmacopeia Procedure Using the Lifecycle Approach -- 17.7.1 Gather Knowledge -- 17.7.1.1 Define the Intended Purpose of the Procedure -- 17.7.1.2 Understand the Settings on your Instruments -- 17.7.1.3 Read the Monograph Carefully -- 17.7.1.4 Define an Analytical Procedure Control Strategy (APCS) -- 17.7.1.5 Run a Trial Study -- 17.7.1.6 Derive an ATP -- 17.7.1.7 Testing the Feasibility of the ATP -- 17.7.1.8 Finalizing the ATP -- 17.8 Performance Qualification -- 17.9 Conclusion -- References -- 18 Transfer of Analytical Procedures 435 Christophe Agut, Marion Berger, and Hugo Zuin -- 18.1 Transfer Process and Strategy -- 18.1.1 Regulatory and International Guidance -- 18.1.2 Transfer Process -- 18.1.2.1 Coordination of Transfer Activities -- 18.1.2.2 Transfer Strategy -- 18.1.2.3 Familiarization and Training -- 18.1.2.4 Design of Experimental Studies and Acceptance Criteria -- 18.1.2.5 Result Evaluation and Transfer Report -- 18.2 Comparative Testing.
 
445 -- 18.2.1 Equivalence-based Methodology -- 18.2.1.1 Principle -- 18.2.1.2 Interlaboratory Study -- 18.2.1.3 Transfer Endpoints -- 18.2.1.4 Acceptance Criteria for Equivalence Testing -- 18.2.1.5 Statistical Analysis (Equivalence Data Analysis Methods) -- 18.2.1.6 Decision Procedure -- 18.2.1.7 Illustration of the Approach on a Real Example -- 18.2.2 Direct Comparison -- 18.2.2.1 Precision -- 18.2.2.2 Accuracy -- References -- 19 Lifecycle Approach to Transfer of Analytical Procedures 471 Joachim Ermer -- 19.1 Facilitation of Transfer by Risk Assessment -- 19.2 Facilitation of Transfer by the APCS -- 19.3 "Lean" Transfer Strategy -- 19.4 Conclusion -- References -- Part V Ongoing Method Performance Verification -- 20 Continuous Improvements, Adjustments, and Changes 479 Dr. Phil W. Nethercote -- 20.1 Drivers for Change -- 20.2 Control of Change in the Pharmaceutical Industry -- 20.3 Implementing a Change -- References -- 21 Monitoring of Analytical Performance 487 Joachim Ermer -- 21.1 Sources of Performance Data and Information -- 21.1.1 System Suitability Test Parameters -- 21.1.2 Parameter from Calibration or Reference Standard Analysis -- 21.1.3 Parameter from Sample Analysis -- 21.1.4 Quality Control Samples (QCS) -- 21.1.5 Batch Results -- 21.1.6 Precisions from Stability -- 21.2 Systematic Monitoring Program -- 21.3 Analytical Performance Evaluation Tools -- 21.3.1 Visualization Charts -- 21.3.2 Average Performance Parameters -- 21.4 Assessment of Analytical Performance -- 21.4.1 Immediate Actions -- 21.4.2 Analytical Performance Review (APR) -- 21.5 Conclusion -- References -- Index.

Özet
New edition of the gold standard in the field of pharmaceutical analysis, extensively updated to include the new ICH Guidelines Q2(R2) and Q14 Following a holistic lifecycle approach to analytical procedures, Method Validation in Pharmaceutical Analysis provides hands-on information for readers involved in development, validation, and continued maintenance and evaluation of analytical procedures in pharmaceutical analysis. This newly revised and updated Third Edition includes much-needed interpretation of the most recent ICH guidelines for validation and method development, as well as recent publications of the USP on Analytical Procedure Lifecycle Management and the activities of the British Pharmacopeia AQbD Working Party. It also addresses hot topics in the field such as data integrity and continuous monitoring of analytical performance. Written by a team of highly qualified pharmaceutical professionals, Method Validation in Pharmaceutical Analysis includes information on relevant topics such as: Data governance, data integrity, and data quality, as well as analytical instrument qualification and system validation lifecycle, and continued HPLC performance qualification Analytical target profile, decision rules and fitness for intended use, and performance characteristics of analytical procedures Method selection, development, and optimization, multivariate analytical procedures, and risk assessment and analytical control strategy Implementation of compendial/pharmacopeia test procedures, transfer of analytical procedures, and a lifecycle approach to transfer of analytical procedures Completely comprehensive in coverage, Method Validation in Pharmaceutical Analysis is an essential reference for scientists, researchers, and professionals in the pharmaceutical industry, analytical chemists, QC and QA staff, and public authorities tasked with relevant regulatory responsibilities.

Notlar
John Wiley and Sons

Konu Terimleri
Drugs -- Analysis.
 
Methodology -- Validity.
 
Médicaments -- Analyse.
 
Méthodologie -- Validité.

Yazar Ek Girişi
Ermer, Joachim,
 
Nethercote, Phil,

Elektronik Erişim
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527831708


KütüphaneMateryal TürüDemirbaş NumarasıYer Numarası[[missing key: search.ChildField.HOLDING]]Durumu/İade Tarihi
Çevrimiçi KütüphaneE-Kitap599798-1001RS187Wiley E-Kitap Koleksiyonu