Thermoelectrics : design and materials
tarafından
Lee, HoSung, author.
Başlık
:
Thermoelectrics : design and materials
Yazar
:
Lee, HoSung, author.
ISBN
:
9781394317387
9781394317370
9781394317363
Basım Bilgisi
:
Second edition.
Fiziksel Tanımlama
:
1 online resource
İçerik
:
Preface to the Second Edition xvii -- Preface to the First Edition xix -- About the Companion Website xxi -- 1 Introduction 1 -- 1.1 Introduction 1 -- 1.2 Thermoelectric Effect 3 -- 1.2.1 Seebeck Effect 3 -- 1.2.2 Peltier Effect 4 -- 1.2.3 Thomson Effect 4 -- 1.2.4 Thomson (or Kelvin) Relationships 4 -- 1.3 The Figure of Merit 5 -- 1.3.1 New Generation Thermoelectrics 5 -- Problems 7 -- References 8 -- 2 Thermoelectric Generators 9 -- 2.1 Ideal Equations 9 -- 2.2 Performance Parameters of a Thermoelectric Module 12 -- 2.3 Maximum Parameters for a Thermoelectric Module 13 -- 2.4 Normalized Parameters 14 -- Example 2.1 Estimate Heat Flow 16 -- Example 2.2 Using Ideal Equations 18 -- 2.5 Effective Material Properties 20 -- 2.6 Comparison of Calculations with a Commercial Product 21 -- Example 2.3 Exhaust Waste Heat Recovery 24 -- 2.7 Figure of Merit and Optimum Geometry 26 -- Problems 27 -- References 30 -- 3 Thermoelectric Coolers and Heat Pumps 31 -- 3.1 Ideal Equations 31 -- 3.2 Maximum Parameters 34 -- 3.3 Normalized Parameters for Thermoelectric Coolers 36 -- Example 3.1 Thermoelectric Cooler 39 -- 3.4 Normalized Parameters for Thermoelectric Heat Pumps 40 -- Example 3.2 Thermoelectric Heat Pump 42 -- Example 3.3 Thermoelectric Cooler and Heat Pump 44 -- Example 3.4 Thermoelectric Air Conditioner 46 -- 3.5 Effective Material Properties 50 -- 3.6 Comparison of Calculations with a Commercial Product 51 -- 3.7 Multistage Modules 52 -- 3.7.1 Commercial Multistage Peltier Modules 55 -- Problems 55 -- References 58 -- 4 Optimal System Design 59 -- 4.1 Introduction 59 -- 4.2 Optimal System Design for Thermoelectric Generators 59 -- 4.2.1 Basic Equations 59 -- 4.2.2 Instability and Maximum Efficiency 62 -- 4.2.3 Dimensionless Characteristics 64 -- 4.2.4 Effect of Convection Conductance 66 -- 4.2.5 Dimensionless Characteristics 67 -- Example 4.1 Waste Heat Recovery System 70 -- Example 4.2 Thermoelectric Generator System in a Nuclear Reactor 75 -- Example 4.3 Thermoelectric Generator on a Wood Stove 78 -- 4.3 Thermoelectric Generator System with Thermal Radiation 81 -- 4.3.1 Dimensional Analysis 82 -- 4.3.2 Instability and Maximum Efficiency with Radiation 84 -- 4.3.3 Dimensionless Characteristics 854. -- 3.4 Heat Flux Conversion to Dimensionless Surrounding Temperature 86 -- Example 4.4 Thermoelectric Generator System for an Offshore Fusion Nuclear Reactor 88 -- 4.4 Optimal System Design of Thermoelectric Coolers and Heat Pumps 92 -- 4.4.1 Basic Equations 92 -- 4.4.2 Instability 94 -- 4.4.3 Dimensionless Optimal Cooling Power 95 -- 4.4.4 Effect of Convection Conductance Nh 97 -- 4.4.5 Dimensionless Characteristics for Optimal Cooling and Half Optimal Cooling 99 -- Example 4.5 Thermoelectric Cooler System 102 -- 4.4.6 Micro Cooler System 107 -- Example 4.6 Micro Cooling System 108 -- 4.4.7 Thermoelectric Heat Pumps 112 -- 4.4.8 Heat Sinks Without Thermoelectric Cooler 112 -- Example 4.7 Thermoelectric Cooler and Heat Pump 115 -- 4.5 Thermoelectric Cooler System with Heat Flux 120 -- 4.5.1 Basic Equations 120 -- 4.5.2 Dimensional Analysis 121 -- 4.5.3 Instability 122 -- 4.5.4 Optimal Cooling 123 -- 4.5.5 Dimensionless Characteristics 123 -- Example 4.8 Thermoelectric Cooler System with Heat Flux 126 -- Example 4.9 Isotherm Instrument 130 -- Example 4.10 Car Seat Climate Control 135 -- Problems 140 -- Thermoelectric Generator System 140 -- Computer Programming 147 -- Thermoelectric Cooler System 149 -- Computer Programming 154 -- Projects 154 -- References 156 -- 5 Thomson Effect, Exact Solution, and Compatibility Factor 159 -- 5.1 Thermodynamics of the Thomson Effect 159 -- 5.1.2 Peltier Effect 159 -- 5.1.3 Thomson Effect 160 -- 5.1.4 Thomson (or Kelvin) Relationships 161 -- 5.2 Exact Solutions 163 -- 5.2.1 Equations for the Exact Solutions and the Ideal Equation 163 -- 5.2.2 Thermoelectric Generator 165 -- 5.2.3 Thermoelectric Coolers 166 -- 5.3 Compatibility Factor 168 -- 5.3.1 Reduced Current Density 168 -- 5.3.2 Heat Balance Equation 169 -- 5.3.3 Numerical Solution 169 -- 5.3.4 Infinitesimal Efficiency 170 -- 5.3.5 Reduced Efficiency 170 -- 5.3.6 Reduced Efficiency 170 -- 5.3.7 Compatibility Factor 171 -- 5.3.8 Segmented Thermoelements 171 -- 5.3.9 Thermoelectric Potential 173 -- 5.4 Thomson Effect 174 -- 5.4.1 Formulation of Basic Equations 175 -- 5.4.2 Numeric Solutions of the Thomson Effect 178 -- 5.4.3 Comparison Between the Thomson Effect and Ideal Equation 180 -- Problems 183 -- References 183 -- 6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 185 -- 6.1 Modeling and Validation 185 -- 6.1.1 Cancellation of Spreading Resistance with Thermal Contact Resistance 186 -- 6.1.2 Thermoelectric Coolers 187 -- 6.1.3 Thermoelectric Generators 187 -- 6.1.4 Validation of Model 187 -- 6.2 Micro and Macro Thermoelectric Coolers 188 -- 6.2.1 Effect of Leg Length 190 -- 6.2.2 Effect of Material on Ceramic Plate 191 -- 6.3 Micro and Macro Thermoelectric Generators 191 -- 6.3.1 Model and Verification for Macro TE Generators 191 -- 6.3.2 Effect of Load Resistance 191 -- 6.3.3 Effect of Leg Length and Ceramic Material 194 -- Problems 194 -- References 195 -- 7 Modeling of Thermoelectric Generators and Coolers with Heat Sinks 197 -- 7.1 Modeling of Thermoelectric Generators with Heat Sinks 197 -- 7.1.1 Modeling 197 -- 7.2 Plate-Fin Heat Sinks 206 -- 7.2.1 Nusselt Number for Air 207 -- 7.2.2 Turbulent Flow for Gases and Liquids 208 -- 7.2.3 Optimal Design of Heat Sink 208 -- 7.2.4 Single Fin Efficiency 209 -- 7.2.5 Overall Fin Efficiency 210 -- 7.3 Modeling of Thermoelectric Coolers with Heat Sinks 210 -- 7.3.1 Modeling 210 -- Problems 218 -- References 218 -- 8 Applications 219 -- 8.1 Exhaust Waste Heat Recovery 219 -- 8.1.1 Recent Studies 219 -- 8.1.2 Modeling of Module Tests 221 -- 8.1.3 Modeling of TEG 226 -- 8.1.4 New Design of TEG 234 -- 8.2 Solar Thermoelectric Generators (STEGs) 237 -- 8.2.1 Recent Studies 237 -- 8.2.2 Modeling of a STEG 238 -- 8.2.3 Optimal Design of STEG (Dimensional Analysis) 246 -- 8.2.4 New Design of STEG 248 -- 8.3 Automotive Thermoelectric Air Conditioner (TEAC) 251 -- 8.3.1 Recent Studies 251 -- 8.3.2 Modeling of Air-to-Air TEAC 254 -- 8.3.3 Optimal Design of TEAC 260 -- 8.3.4 New Design of TEAC 262 -- Problems 266 -- References 267 -- 9 Crystal Structure 269 -- 9.1 Atomic Mass 269 -- 9.1.1 Avogadro's Number 269 -- Example 9.1 Mass of One Atom 269 -- 9.2 Unit Cells of a Crystal 269 -- 9.2.1 Bravais Lattices 272 -- Example 9.2 Gold Au Forms an FCC Unit Cell. Its Atomic Radius is 1.44 Å.
Calculate the Lattice Constant -- of the Gold, and Also Calculate the Density of Gold 274 -- 9.3 Crystal Planes 275 -- Example 9.3 Indices of a Plane 276 -- Problems 277 -- References 277 -- 10 Physics of Electrons 279 -- 10.1 Quantum Mechanics 279 -- 10.1.1 Electromagnetic Wave 279 -- 10.1.2 Atomic Structure 281 -- 10.1.3 Bohr's Model 282 -- 10.1.4 Line Spectra 283 -- 10.1.5 De Broglie Wave 285 -- 10.1.6 Heisenberg Uncertainty Principle 285 -- 10.1.7 Schrd̲inger Equation 286 -- 10.1.8 A Particle in a One-Dimensional Box 286 -- 10.1.9 Quantum Numbers 289 -- 10.1.10 Electron Configurations 291 -- Example 10.1 Electronic Configuration of a Silicon Atom 292 -- 10.2 Band Theory and Doping 293 -- 10.2.1 Covalent Bonding 293 -- 10.2.2 Energy Band 294 -- 10.2.3 Pseudo-Potential Well 295 -- 10.2.4 Doping, Donors, and Acceptors 295 -- Problems 296 -- References 297 -- 11 Density of States, Fermi Energy, and Energy Bands 299 -- 11.1 Current and Energy Transport 299 -- 11.2 Electron Density of States 300 -- 11.2.1 Dispersion Relation 300 -- 11.2.2 Effective Mass 300 -- 11.2.3 Density of States 301 -- 11.3 Fermi-Dirac Distribution 303 -- 11.4 Electron Concentration 304 -- 11.5 Fermi Energy in Metals 305 -- Example 11.1 Fermi Energy in Gold 306 -- 11.6 Fermi Energy in Semiconductors 307 -- Example 11.2 Fermi Energy in Doped Semiconductors 308 -- 11.7 Energy Bands 309 -- 11.7.1 Multiple Bands 310 -- 11.7.2 Direct and Indirect Semiconductors 310 -- 11.7.3 Periodic Potential (Kronig-Penney Model) 311 -- Problems 317 -- References 318 -- 12 Thermoelectric Transport Properties for Electrons 319 -- 12.1 Boltzmann Transport Equation 319 -- 12.2 Semiclassical Model of Metals 321 -- 12.2.1 Electric Current Density 321 -- 12.2.2 Electrical Conductivity 321 -- Example 12.1 Electron Relaxation Time of Gold 323 -- 12.2.3 Seebeck Coefficient 323 -- Example 12.2 Seebeck Coefficient of Gold 325 -- 12.2.4 Electronic Thermal Conductivity 325 -- Example 12.3 Electronic Thermal Conductivity of Gold 326 -- 12.3 Power-Law Model for Metals and Semiconductors 326 -- 12.3.1 Equipartition Principle 327 -- 12.3.2 Parabolic Single-Band Model 328 -- Example 12.4 Seebeck coefficient of PbTe 330 -- Example 12.5 Material Parameter 334 -- 12.4 Hall Effect 335 -- 12.5 Electron Relaxation Time 339 -- 12.5.1 Acoustic Phonon Scattering 339 -- 12.5.2 Polar Optical Phonon Scattering 339 -- 12.5.3 Ionized Impurity Scattering 340 -- 12.5.4 Comparison Between the S ...
Özet
:
Complete introduction to the field of thermoelectrics, covering materials, applications, recent developments, and more, with end-of-chapter problems included throughout Thermoelectrics provides an introduction to the fundamental theories in the fast developing and interdisciplinary field of thermoelectrics. The topics covered are in sync with contemporary technology advancement happenings within the TEC/TEG electronics cooling community and include discussion of challenges and concerns surrounding practical applications. The first section covers thermoelectric generators and coolers (refrigerators) before examining optimal design with dimensional analysis. A number of applications are considered, including solar thermoelectric generators, thermoelectric air conditioners and refrigerators, thermoelectric coolers for electronic devices, thermoelectric compact heat exchangers, and biomedical thermoelectric energy harvesting systems. The second section focuses on materials and covers the physics of electrons and phonons, theoretical modeling of thermoelectric transport properties, thermoelectric materials, and nanostructures. In this Second Edition, many new examples and end-of-chapter problems have been added. New results from the theories have been added in certain chapters, along with new design charts and many examples showing how to use the charts. A companion website hosts solution manuals and appendices. Sample topics covered in Thermoelectrics include: Thermoelectric effects, including the Seebeck, Peltier, and Thomson effects as well as Thomson/Kelvin relationships Performance, maximum, abnormal parameters for thermoelectric modules as well as effective material properties Thermal and electrical contact resistances for micro and macro devices, with information on modeling and validation Thermoelectric transport properties, covering Seebeck coefficient, electrical conductivity, lattice and electronic thermal conductivities Low-dimensional nanostructures, covering quantum wells, wires, and dots and supporting proof-of-principle studies Thermoelectrics is an ideal resource on the fundamentals of the subject for professionals in the electronics cooling industry, solid state physicists, and materials scientists and engineers. It is also a valuable reference for early career scientists and undergraduate and graduate students in related programs of study.
Notlar
:
John Wiley and Sons
Konu Terimleri
:
Thermoelectric apparatus and appliances.
Appareils thermoélectriques.
Elektronik Erişim
:
| Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | [[missing key: search.ChildField.HOLDING]] | Durumu/İade Tarihi |
|---|
| Çevrimiçi Kütüphane | E-Kitap | 599867-1001 | TK2950 .L44 2025 | | Wiley E-Kitap Koleksiyonu |