Mechanics of hydraulic fracturing : experiment, model, and monitoring için kapak resmi
Başlık:
Mechanics of hydraulic fracturing : experiment, model, and monitoring
Yazar:
Zhang, Xi (Geologist), editor.
ISBN:
9781119742487

9781119742418

9781119742456
Fiziksel Tanımlama:
1 online resource : illustrations (some color)
İçerik:
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Hydraulic Fracture Geometry from Mineback Mapping -- 1.1 Introduction -- 1.2 Summary of Mapped Fracture Geometries -- 1.2.1 Fractures in Coal -- 1.2.1.1 DHM-7 Fracture -- 1.2.1.2 DDH 190 Fracture -- 1.2.2 Fractures in Hard Rock -- 1.2.2.1 Northparkes E48 Mapped Fractures -- 1.2.3 Other Mapped Fractures -- 1.3 Comparison of Mapped Fracture Geometries -- 1.3.1 Dimensionless Parameters -- 1.4 Fracture Geometry Summary -- 1.5 Conclusions -- References -- Chapter 2 Measurements of the Evolution of the Fluid Lag in Laboratory Hydraulic Fracture Experiments in Rocks -- 2.1 Introduction -- 2.2 Materials and Methods -- 2.2.1 Materials and Experimental Set-up -- 2.2.2 Methods -- 2.2.3 Experimental Design -- 2.3 Results -- 2.3.1 MARB-005 -- A HF Growth with a Fluid Lag -- 2.3.2 MARB-007 -- A HF Growth during and after the Injection -- 2.3.3 GABB-002 -- A Point-Load Like HF Growth -- 2.4 Discussions and Conclusions -- 2.4.1 Resolution of the Fluid Front Location -- 2.4.2 Quasi-Brittle Effects -- 2.4.3 Hydraulic Fracture Surfaces -- 2.4.4 Conclusions -- Data Availability -- Appendix A Determination of the Time of Fracture Initiation -- References -- Chapter 3 Mapping Hydraulic Fracture Growth Using Tiltmeter Monitoring Technique -- 3.1 Introduction -- 3.2 Forward Problem Formulation -- 3.2.1 Forward Model Definition -- 3.2.2 Forward Model -- 3.2.2.1 Point Source Dislocation Singularity Model -- 3.2.2.2 A General Distributed Dislocation Model -- 3.3 Bayesian Inversion Method -- 3.4 Field Applications -- 3.4.1 Inversion Results Using the Point Source Forward Model -- 3.4.2 Inversion Results Using the General Planar Forward Model -- 3.5 Conclusions -- Acknowledgments -- References -- Chapter 4 Experimental Observations of Hydraulic Fracturing.

4.1 Introduction -- 4.2 Experimental Setup on Laboratory-Scale -- 4.3 Laboratory Investigation of Fluid-.Driven Fractures in Various Applications -- 4.3.1 Hydraulic Fracturing in Oil and Gas Reservoirs -- 4.3.1.1 Basic Issues of Breakdown Pressure and Fracture Geometry -- 4.3.1.2 Multiple Hydraulic Fracture Growth -- 4.3.1.3 Interactions Between Hydraulic Fractures and Natural Fractures -- 4.3.1.4 Fracture Propagation Through the Layered Formation -- 4.3.1.5 Nonlinear Fracturing in the Deep Reservoir -- 4.3.1.6 Cyclic Fracturing -- 4.3.2 Environmental Fracturing in a Shallow Formation -- 4.3.3 Hydraulic Stimulation in EGS -- 4.4 Conclusions and Future Work -- References -- Chapter 5 First Field Trail and Experimental Studies on scCO2 Fracturing -- 5.1 Introduction -- 5.2 Review on scCO2 Fracturing -- 5.2.1 Shale and scCO2 Interaction -- 5.2.1.1 Microscale Physical Changes -- 5.2.1.2 Microscale Chemical Changes -- 5.2.1.3 Macroscale Mechanical Changes -- 5.2.1.4 Conclusions on the Experiments on Shale and scCO2 Interaction -- 5.2.2 Experiments and Numerical Simulations on scCO2 Fracturing -- 5.2.2.1 Experiments on scCO2 Fracturing -- 5.2.2.2 Numerical Simulations on scCO2 Fracturing -- 5.3 A Field Trail on scCO2 Fracturing of Continental Shale in Yanchang Oil Field -- 5.3.1 scCO2 Fracturing Technology -- 5.3.2 scCO2 Fracturing Field Test -- 5.3.2.1 Reservoir Properties of Test Wells -- 5.3.2.2 Fracturing Process and Operation Parameters -- 5.3.3 Field Test Results and Analysis -- 5.3.3.1 Microseismic Monitoring and Inversion of Fracture Geometry -- 5.3.3.2 Production Data -- 5.4 Challenges in scCO2 Fracturing -- 5.4.1 scCO2 Fracturing Mechanism Is Still Not Clear -- 5.4.2 Challenges in Proppants Carrying -- 5.4.3 Challenge on the Predicting and Monitoring CO2 Phase -- 5.4.4 Lack of Specialized Equipment for scCO2 Fracturing -- 5.5 Conclusions.

Acknowledgments -- References -- Chapter 6 An Unstructured Moving Element Mesh for Hydraulic Fracture Modeling -- 6.1 Introduction -- 6.2 Discrete Model of a Planar Hydraulic Fracture -- 6.2.1 Unstructured Mesh -- 6.2.2 Discrete Elasticity Equation -- 6.2.3 Discretized Lubrication Equations for Channel Elements -- 6.2.4 Tip Elements -- 6.3 Time-Marching Algorithm -- 6.3.1 Iteration Loops -- 6.3.2 Local Front Update -- 6.3.3 Generation of a New Ring of Tip Elements -- 6.3.4 Crack Surface Remeshing -- 6.3.5 General Solution Algorithm Logic -- 6.4 Numerical Simulations: Stress Barriers -- 6.4.1 Description of Experiment -- 6.4.2 Numerical Simulations (no Remeshing) -- 6.4.3 Comparison with Experimental Results and Other Simulations -- 6.4.4 Illustration and Assessment of the Element Re-Meshing Strategy -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 Study of Hydraulic Fracture Interference with a Lattice Model -- 7.1 Introduction -- 7.2 XSite Code Overview -- 7.3 Numerical Studies of Fracture Interference -- 7.3.1 Interaction of a Hydraulic Fracture with a Natural Fracture -- 7.3.2 Interaction of Two Hydraulic Fractures -- 7.3.2.1 Numerical Study -- 7.3.2.2 Interpretation of Results -- 7.3.3 Interaction of Hydraulic Fractures in Injection of Multiple Clusters -- 7.3.4 Interaction of Hydraulic Fractures in Fractured Medium -- 7.3.5 Interaction of Hydraulic Fractures in Zipper-Stage Injection -- 7.4 Afterword -- References -- Chapter 8 The Tipping Point: How Tip Asymptotics Can Enhance Numerical Modeling of Hydraulic Fracture Evolution -- 8.1 Introduction -- 8.2 Mathematical Model -- 8.2.1 Assumptions -- 8.2.2 Governing Equation -- 8.2.2.1 Elasticity -- 8.2.2.2 Fluid Transport -- 8.2.2.3 Boundary and Propagation Conditions -- 8.2.2.4 Tip Asymptotics, Vertex Solutions, and Generalized Asymptotes.

8.3 Discretization, Coupled Equations, and the Multiscale ILSA Scheme to Locate the Free Boundary -- 8.3.1 Discretization -- 8.3.2 Locating the Free Boundary Using the Implicit Level Set Algorithm (ILSA) -- 8.4 Numerical Results -- 8.4.1 Symmetric Stress Barrier: m-Vertex Solution vs Experiment and the Effect of Toughness -- 8.4.2 A Stress Drop: Distinct Propagation Regimes Along the Periphery -- 8.5 Conclusions -- 8.6 Acknowledgment -- References -- Chapter 9 Plasticity: A Mechanism for Hydraulic Fracture Height Containment -- 9.1 Introduction -- 9.2 The Dependence of the Effective Fracture Toughness on Propagation Direction -- 9.3 Effective Fracture Toughness vs. Closure Stress -- 9.4 A New Brittleness Index Defines Fracture Containment -- 9.5 Conclusions -- Acknowledgments -- References -- Chapter 10 Turbulent Flow Effects on Propagation of Radial Hydraulic Fracture in Permeable Rock -- 10.1 Introduction -- 10.2 Model Formulation -- 10.2.1 Problem Definition -- 10.2.2 Governing Equations -- 10.2.2.1 Crack Elasticity -- 10.2.2.2 Fluid Flow -- 10.2.2.3 Fracture Propagation -- 10.2.2.4 Boundary Conditions -- 10.2.2.5 Global Fluid Volume Balance -- 10.3 Solution Approach -- 10.4 Solution Examples for Typical Field Applications -- 10.5 Limiting Propagation Regimes -- 10.6 Normalization of the Governing Equations -- 10.7 Problem Parameter Space Analyses -- 10.7.1 Zero Leak-Off Case (Impermeable Rock) -- 10.7.2 Nonzero Leak-Off Case (Permeable Rock) -- 10.8 Conclusions -- Acknowledgments -- References -- Chapter 11 Analysis of a Constant Height Hydraulic Fracture -- 11.1 Introduction -- 11.2 Governing Equations -- 11.3 Tip Region -- 11.4 Vertex Solutions -- 11.4.1 Storage Viscosity -- 11.4.2 Leak-off Viscosity -- 11.4.3 Storage Toughness -- 11.4.4 Leak-off Toughness -- 11.5 Full Solution -- 11.6 Application Examples -- 11.7 Summary -- References.

Chapter 12 Discrete Element Modeling of Hydraulic Fracturing -- 12.1 Introduction -- 12.2 Discrete Element Modeling of Hydraulic Fracturing -- 12.3 Hydraulic Fracture Interacting with Natural Fractures -- 12.3.1 Hybrid Discrete-Continuum Method -- 12.3.2 Model Calibration for a Hydraulic Fracture in Intact Rock -- 12.3.3 Orthogonal Crossing -- 12.3.3.1 Effects of Stress Ratio and Friction of Natural Fractures -- 12.3.3.2 Effect of Strength (Toughness) Contrast -- 12.3.3.3 Effect of Stiffness (Modulus) Contrast -- 12.3.4 Non-Orthogonal Crossing -- 12.3.5 Fracturing Complexity -- 12.4 DEM Modeling of Supercritical Carbon Dioxide Fracturing -- 12.4.1 New Algorithm for the Toughness-Dominated Regime -- 12.4.2 Numerical Model Setup -- 12.4.2.1 Model Description -- 12.4.2.2 Model Verification -- 12.4.3 Hydraulic Fracturing in Intact Rock Sample -- 12.4.4 Hydraulic Fracturing in Fractured Rock Sample -- 12.5 DEM Modeling of Fluid Injection into Dense Granular Media -- 12.5.1 Background and Experimental Motivation -- 12.5.2 Model Setup -- 12.5.3 Effect of the Injection Rate -- 12.5.4 Dimensionless Time Scaling -- 12.5.5 Energy Partition -- 12.6 Discussion -- 12.7 Conclusions -- References -- Chapter 13 Interaction of a Hydraulic Fracture with Natural Fractures of Lesser Height and Weak Bedding Interfaces as a Possible Mechanism for Fracture Swarms -- 13.1 Introduction -- 13.2 Possible Mechanisms for Fracture Bifurcation -- 13.3 Interaction of Closely Spaced Parallel Fractures -- 13.4 Possible Mechanisms for Creating Fracture Swarms -- 13.5 Conclusions -- References -- Chapter 14 Hydraulic Fracturing Mechanisms Leading to Self-Organization Within Dyke Swarms -- 14.1 Introduction -- 14.2 Swarm Morphology and Fundamental Drivers -- 14.3 Dyke Swarm Model and Energetics -- 14.4 Alignment -- 14.5 Avoidance -- 14.6 Stress Shadow -- 14.7 Stress Plugs.
Özet:
"Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing provides a summary of the research in mechanics of hydraulic fractures undertaken the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the applications of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four well-qualified editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, case studies on the applications of new understandings and methods are included throughout the book. Sample topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and applications of the process Researchers and university students working in the field of fluid-driven fracture growth will find immense value in this book as a comprehensive reference on hydraulic fracturing mechanics"-- Provided by publisher.
Notlar:
John Wiley and Sons
Yazar Ek Girişi:
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 597826-1001 TN871.255 .M43 2023
Arıyor...

On Order