
Başlık:
Colloidal quantum dot light emitting diodes : materials and devices
Yazar:
Meng, Hong, 1966- author.
ISBN:
9783527845149
9783527845125
Fiziksel Tanımlama:
1 online resource (400 pages)
İçerik:
Preface -- 1 History and Introduction of QDs and QDLEDs -- 1.1 Preparation Route of Quantum Dots -- 1.2 Light-Emitting Characteristics of Quantum Dots -- 1.2.1 Particle Size and Emission Color -- 1.2.2 Quantum Dot Optical Property -- 1.2.2.1 Quantum Surface Effect -- 1.2.2.2 Quantum Size Effect -- 1.2.2.3 Quantum Confinement Effect -- 1.2.2.4 Quantum Tunnelling Effect -- 1.2.2.5 Quantum Optical Properties -- 1.2.3 Core-Shell Structure of QDs -- 1.2.4 Continuously Gradated Core-Shell Structure of QDs (cg-QDs) -- 1.2.5 Typical QDs Materials -- 1.2.5.1 II-VI Semiconductor QDs -- 1.2.5.2 IV-VI Semiconductor QDs -- 1.2.5.3 II 3 -v 2 Semiconductor QDs -- 1.2.5.4 Ternary I-III-VI 2 Chalcopyrite Semiconductor QDs -- 1.2.5.5 Single Element-Based Semiconductor QDs -- 1.3 Application of Quantum Dots on Display Devices -- 1.3.1 The Basic Structure of QDLED -- 1.3.2 Main Factors Affecting QDLED Light Emission -- 1.3.2.1 Auger Recombination (AR) -- 1.3.2.2 Fluorescence Resonance Energy Transfer -- 1.3.2.3 Surface Traps and Field Emission Burst -- 1.3.3 History of QDLED Development -- 1.4 Conclusion and Remarks -- References -- 2 Colloidal Semiconductor Quantum Dot LED Structure and Principles -- 2.1 Basic Concepts -- 2.1.1 Color Purity -- 2.1.2 Solution Processability -- 2.1.3 Stability -- 2.1.4 Surface States of Quantum Dots -- 2.1.5 Energy Levels and Energy Bands -- 2.1.6 Metals, Semiconductors, and Insulators -- 2.1.7 Electrons and Holes -- 2.1.8 Fermi Distribution Function and Fermi Energy Level -- 2.1.9 Schottky Barrier -- 2.1.10 Energy Level Alignment -- 2.2 Colloidal Quantum Dot Light-Emitting Devices -- 2.2.1 The Basic Structure of QDLED -- 2.2.2 The Working Principle of QDLED -- 2.2.3 Operating Parameters of QDLED -- 2.2.3.1 Turn-on Voltage -- 2.2.3.2 Luminous Brightness -- 2.2.3.3 Luminous Efficiency -- 2.2.3.4 Luminescence Color -- 2.2.3.5 Luminous Lifetime -- 2.2.3.6 QDLED Device Fabrication Process -- References -- 3 Synthesis and Characterization of Colloidal Semiconductor Quantum Dot Materials -- 3.1 Background -- 3.2 Synthesis and Post-processing of Colloidal Quantum Dots -- 3.2.1 Direct Heating Method and Hot Injection Synthesis Method -- 3.2.1.1 Hot-Injection Method -- 3.2.1.2 Direct Heating Method -- 3.2.2 Precursor Chemistry -- 3.2.3 Ligating and Non-ligating Solvents -- 3.2.4 Mechanism of Nucleation and Growth of Colloidal Quantum Dots -- 3.2.5 Size Distribution Focus and Size Distribution Scatter -- 3.2.6 Crystalline Species-Mediated Growth and Orientation of Nanocrystals Attachment Growth -- 3.2.7 Synthesis Methods and Band Gap Regulation Engineering of Nuclear-Shell Quantum Dots -- 3.2.7.1 Non-alloyed Core-Shell Quantum Dots -- 3.2.7.2 Alloy Core-Shell Quantum Dots -- 3.2.8 Surface Chemistry of Colloidal Quantum Dots -- 3.2.8.1 Covalent Bond Classification Method -- 3.2.8.2 Entropic Ligands -- 3.3 Material Characterization -- 3.3.1 Ultraviolet-Visible (UV-Vis) Absorption and Fluorescence Spectra -- 3.3.2 Nuclear Magnetic Resonance Spectroscopy -- 3.3.3 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.3.4 X-Ray Photoelectron Spectroscopy (XPS) -- 3.3.5 Transmission Electron Microscopy -- 3.3.6 Small-Angle X-Ray Scattering and Wide-Angle X-Ray Scattering -- 3.3.7 X-Ray Diffractometer -- 3.3.8 X-Ray Absorption Fine Structure Spectra -- 3.3.9 Measurement of Fluorescence Quantum Yield -- 3.4 Conclusion and Outlook -- References -- 4 Red Quantum Dot Light-Emitting Diodes -- 4.1 Background -- 4.2 Red Light Quantum Dot Materials -- 4.2.1 Materials -- 4.2.2 Quantum Dot Structure Design and Optimization -- 4.2.3 Surface Ligands -- 4.2.4 Core-Shell Structure -- 4.2.5 Alloy Core-Shell Structure -- 4.3 Red QDLED Devices -- 4.3.1 Red QDLED Device Architecture Development -- 4.3.2 Common Device Structures -- 4.4 Conclusion and Outlook -- References -- 5 Green Quantum Dot LED Materials and Devices -- 5.1 Background -- 5.2 Commonly Used Luminescent Layer Materials in Green QDLEDs -- 5.2.1 Discrete Core/Shell Quantum Dots -- 5.2.2 Alloyed Core/Shell Quantum Dots -- 5.2.3 Core/Multilayer Shell Quantum Dots -- 5.3 Development of Device Structures for Green QDLEDs -- 5.4 Factors Affecting the Performance of Green QDLEDs -- 5.4.1 QD Ligand Effect -- 5.4.2 QD Core/Shell Structure -- 5.4.3 Optimization of the Device Structure -- 5.4.4 Other Strategies to Improve Device Performance -- 5.5 Summary and Outlook -- References -- 6 Blue Quantum Dot Light-Emitting Diodes -- 6.1 Introduction -- 6.2 Blue Quantum Dot Luminescent Materials -- 6.2.1 Blue Quantum Dots Containing Cadmium -- 6.2.2 Cadmium-Free Quantum Dots -- 6.2.2.1 Quantum Dots Based on InP -- 6.2.2.2 Quantum Dots Based on ZnSe -- 6.2.2.3 Quantum Dots Based on Cu -- 6.2.2.4 Quantum Dots Based on AlSb -- 6.3 Optimization of Charge Transport Layer (CTL) -- 6.3.1 Hole Transport Layer -- 6.3.2 Electron Transport Layer -- 6.4 Device Structure -- 6.5 Summary -- References -- 7 Near-Infrared Quantum Dots (NIR QDs) -- 7.1 Introduction of Near-Infrared Quantum Dots -- 7.2 Near-Infrared Quantum Dot Materials -- 7.2.1 Chalcogenide Lead Quantum Dots -- 7.2.2 Chalcogenide Cadmium Quantum Dots -- 7.2.3 Silicon Quantum Dots -- 7.3 Optimization of Near-Infrared Quantum Dot Materials -- 7.3.1 Regulation of Near-Infrared Quantum Dots by Ligand Engineering -- 7.3.2 Control of Near-Infrared Quantum Dots by Core/Shell Structure -- 7.3.3 Quantum Dots in the Matrix -- 7.4 Summary and Prospect -- References -- 8 White QDLED -- 8.1 Generation of White Light -- 8.2 Quantum Dots for White LEDs -- 8.2.1 Yellow-Blue Composite White Light Quantum Dots -- 8.2.1.1 Cadmium-Containing Yellow Light Quantum Dots -- 8.2.1.2 Cadmium-Free Yellow Light Quantum Dots -- 8.2.2 Three-Base Color Quantum Dot Composite -- 8.2.3 Quantum Dots with Direct White Light Emission -- 8.3 Summary Outlook -- References -- 9 Non-Cadmium Quantum Dot Light-Emitting Materials and Devices -- 9.1 Introduction -- 9.2 Quantum Dots and QDLED -- 9.2.1 InP -- 9.2.2 ZnSe -- 9.2.3 I-iii-vi -- 9.3 Methods for Optimizing QDLED Performance -- 9.3.1 Ligand Engineering -- 9.3.2 Shell Engineering -- 9.3.3 QDLED Device Structure Optimization -- 9.4 Summary and Outlook -- References -- 10 AC-Driven Quantum Dot Light-Emitting Diodes -- 10.1 Principle of Luminescence of DC and AC-Driven QDLEDs -- 10.2 Mechanism of Double-Emission Tandem Structure of AC QDLEDs -- 10.2.1 Field-Generated AC QDLEDs -- 10.2.2 Half-Field to Half-Injection AC QDLEDs -- 10.2.3 AC/DC Dual Drive Mode QDLEDs -- 10.3 Optimization Strategies for AC QDLEDs -- 10.3.1 Optimization of the Field-Induced AC QDLED -- 10.3.1.1 Dielectric Layer Optimization -- 10.3.1.2 Quantum Dot Layer Optimization -- 10.3.2 Optimization of Half-Field-Driven Half-Injected AC QDLEDs -- 10.3.2.1 Charge Generation Layer Optimization -- 10.3.2.2 Tandem Structure -- 10.3.2.3 AC/DC Dual Drive Mode QDLED Optimization -- 10.3.3 Conclusion and Future Direction of AC-QDLED -- References -- 11 Stability Study and Decay Mechanism of Quantum Dot Light-Emitting Diodes -- 11.1 Quantum Dot Light-Emitting Diode Stability Research Status -- 11.2 Factors Affecting the Stability of Quantum Dot Light-Emitting Diodes -- 11.2.1 Quantum Dot Light-Emitting Layer -- 11.2.2 Hole Transport Layer -- 11.2.3 Electronic Transport Layer -- 11.2.4 Other Functional Layers -- 11.3 Quantum Dot Light-Emitting Diode Efficiency Decay Mechanism -- 11.4 Aging Mechanisms of QDLEDs -- 11.4.1 Positive Aging -- 11.4.2 Negative Aging -- 11.4.3 Electron Transport Layer -- 11.4.4 Hole Transport Layer -- 11.4.5 QDs Layer -- 11.5 Characterization Technologies for QDLEDs -- 11.5.1 Transient Electroluminescence -- 11.5.2 Electro-Absorption (EA) Spectroscopy -- 11.5.3 In-Situ EL-PL Measurement -- 11.5.4 Differential Absorption Spectroscopy -- 11.5.5 Displacement Current Measurement DCM Technology -- 11.6 Outlook -- References -- 12 Electron/Hole Injection and Transport Materials in Quantum Dot Light-Emitting Diodes -- 12.1 Introduction -- 12.2 Charge-Transport Mechanisms -- 12.3 Electron Transport Materials (ETMs) for QDLED -- 12.3.1 Metal-Doped ETMs -- 12.3.2 Metal Salt-Doped ETMs -- 12.3.3 Design of Composite Materials ETMs -- 12.3.4 Polymer-Modified ETMs -- 12.3.5 Inorganic Organic Hybrid ETMs -- 12.3.6 Double-Stacked ETMs -- 12.4 Electron Injection Materials for QDLED -- 12.5 Hole Transport Materials for QDLED -- 12.5.1 Doping of HT.
Ms -- 12.5.2 Compositions of HTMS -- 12.5.3 New HTM Materials for QDLED -- 12.6 Hole Injection Materials for QDLED -- 12.7 Summary and Outlook -- References -- 13 Quantum Dot Industrial Development and Patent Layout -- 13.1 Introduction -- 13.2 Patent Layout -- 13.2.1 Nanosys -- 13.2.2 SAMSUNG -- 13.2.3 Nanoco -- 13.2.4 Najing Tech -- 13.2.5 CSOT -- 13.2.6 BOE -- 13.2.7 TCL -- 13.3 Summary and Outlook -- References -- 14 Patterning Techniques for Quantum Dot Light-Emitting Diodes (QDLED) -- 14.1 Introduction -- 14.2 Photolithography -- 14.3 Micro-Contact Transfer -- 14.4 Inkjet Printing -- 14.5 Other Patterning Techniques -- 14.6 Conclusion -- References -- Index.
Özet:
Colloidal Quantum Dot Light Emitting Diodes Explore all the core components for the commercialization of quantum dot light emitting diodes Quantum dot light emitting diodes (QDLEDs) are a technology with the potential to revolutionize solid-state lighting and displays. Due to the many applications of semiconductor nanocrystals, of which QDLEDs are an example, they also hold the potential to be adapted into other emerging semiconducting technologies. As a result, it is critical that the next generation of engineers and materials scientists understand these diodes and their latest developments. Colloidal Quantum Dot Light Emitting Diodes: Materials and Devices offers a comprehensive introduction to this subject and its most recent research advancements. Beginning with a summary of the theoretical foundations and the basic methods for chemically synthesizing colloidal semiconductor quantum dots, it identifies existing and future applications for these groundbreaking technologies. The result is tailored to produce a thorough understanding of this area of research. Colloidal Quantum Dot Light Emitting Diodes readers will also find: An author with decades of experience in the field of organic electronics Detailed discussion of topics including advanced display technologies, the patent portfolio and commercial considerations, and more Strategies and design techniques for improving device performance Colloidal Quantum Dot Light Emitting Diodes is ideal for material scientists, electronics engineers, inorganic and solid-state chemists, solid-state and semiconductor physicists, photochemists, and surface chemists, as well as the libraries that support these professionals.
Notlar:
John Wiley and Sons
Konu Terimleri:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527845149Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 598687-1001 | TK7871.89 .L53 | Arıyor... | Arıyor... |
